Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1994 Dec;102(Suppl 10):79–84. doi: 10.1289/ehp.94102s1079

Phosphodiesterase IV inhibitors as therapy for eosinophil-induced lung injury in asthma.

T J Torphy 1, M S Barnette 1, D W Hay 1, D C Underwood 1
PMCID: PMC1566970  PMID: 7705312

Abstract

Asthma is a complex, multifactorial disease that is underpinned by airway inflammation. A variety of cytotoxic substances are released into the airway from infiltrating inflammatory cells, especially the eosinophil. These cytotoxic substances, including reactive oxygen metabolites, produce damage to the airway epithelium, a histologic feature of chronic asthma. Damage to the airway epithelium, in turn, is thought to be a major factor responsible for the development of airway hyperreactivity, a hallmark of asthma. One notable molecular target for novel antiasthmatic drugs is the cyclic AMP-specific phosphodiesterase (PDE) or PDE IV. This isozyme is the predominant form of cyclic nucleotide PDE activity in inflammatory cells. Thus, in view of the putative role of cyclic AMP as an inhibitory second messenger in these cells, PDE IV inhibitors have been shown to suppress inflammatory cell activity. The purpose of the present experiments was to examine the effect of the PDE IV inhibitor, R-rolipram, on three key functions of the guinea pig eosinophil: a) superoxide anion (O2-) production, b) adhesion to human umbilical vein endothelial cells (HUVECs), and c) infiltration into the airway. R-rolipram-elevated eosinophil cyclic AMP content (EC50 = 1.7 microM) and inhibited fMLP-induced O2- production in a concentration-dependent manner (IC50 = 0.3 microM). In contrast, neither siguazodan, a PDE III inhibitor, nor zaprinast, a PDE V inhibitor, had an appreciable effect. R-rolipram (30 microM) also reduced by 25 to 40% the adhesion of eosinophils to HUVECs stimulated with phorbol myristate acetate or tumor necrosis factor-alpha, particularly under conditions in which both cell types were simultaneously exposed to the PDE IV inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
79

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes P. J., Chung K. F., Page C. P. Inflammatory mediators and asthma. Pharmacol Rev. 1988 Mar;40(1):49–84. [PubMed] [Google Scholar]
  2. Barnes P. J. Neuropeptides in the lung: localization, function, and pathophysiologic implications. J Allergy Clin Immunol. 1987 Feb;79(2):285–295. doi: 10.1016/0091-6749(87)90143-6. [DOI] [PubMed] [Google Scholar]
  3. Bousquet J., Chanez P., Lacoste J. Y., White R., Vic P., Godard P., Michel F. B. Asthma: a disease remodeling the airways. Allergy. 1992 Feb;47(1):3–11. doi: 10.1111/j.1398-9995.1992.tb02242.x. [DOI] [PubMed] [Google Scholar]
  4. Clutterbuck E. J., Sanderson C. J. Regulation of human eosinophil precursor production by cytokines: a comparison of recombinant human interleukin-1 (rhIL-1), rhIL-3, rhIL-5, rhIL-6, and rh granulocyte-macrophage colony-stimulating factor. Blood. 1990 May 1;75(9):1774–1779. [PubMed] [Google Scholar]
  5. Dent G., Giembycz M. A., Rabe K. F., Barnes P. J. Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by 'type IV'-selective PDE inhibitors. Br J Pharmacol. 1991 Jun;103(2):1339–1346. doi: 10.1111/j.1476-5381.1991.tb09790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Djukanović R., Roche W. R., Wilson J. W., Beasley C. R., Twentyman O. P., Howarth R. H., Holgate S. T. Mucosal inflammation in asthma. Am Rev Respir Dis. 1990 Aug;142(2):434–457. doi: 10.1164/ajrccm/142.2.434. [DOI] [PubMed] [Google Scholar]
  7. Giembycz M. A., Dent G. Prospects for selective cyclic nucleotide phosphodiesterase inhibitors in the treatment of bronchial asthma. Clin Exp Allergy. 1992 Mar;22(3):337–344. doi: 10.1111/j.1365-2222.1992.tb03095.x. [DOI] [PubMed] [Google Scholar]
  8. Gleich G. J., Loegering D. Selective stimulation and purification of eosinophils and neutrophils from guinea pig peritoneal fluids. J Lab Clin Med. 1973 Sep;82(3):522–528. [PubMed] [Google Scholar]
  9. Griswold D. E., Webb E. F., Breton J., White J. R., Marshall P. J., Torphy T. J. Effect of selective phosphodiesterase type IV inhibitor, rolipram, on fluid and cellular phases of inflammatory response. Inflammation. 1993 Jun;17(3):333–344. doi: 10.1007/BF00918994. [DOI] [PubMed] [Google Scholar]
  10. Holgate S. T. Inflammatory cells and their mediators in the pathogenesis of asthma. Postgrad Med J. 1988;64 (Suppl 4):82–95. [PubMed] [Google Scholar]
  11. Jarjour N. N., Busse W. W., Calhoun W. J. Enhanced production of oxygen radicals in nocturnal asthma. Am Rev Respir Dis. 1992 Oct;146(4):905–911. doi: 10.1164/ajrccm/146.4.905. [DOI] [PubMed] [Google Scholar]
  12. Jeffery P. K. Morphology of the airway wall in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1991 May;143(5 Pt 1):1152–1161. doi: 10.1164/ajrccm/143.5_Pt_1.1152. [DOI] [PubMed] [Google Scholar]
  13. Kanofsky J. R., Hoogland H., Wever R., Weiss S. J. Singlet oxygen production by human eosinophils. J Biol Chem. 1988 Jul 15;263(20):9692–9696. [PubMed] [Google Scholar]
  14. Kips J. C., Tavernier J. H., Joos G. F., Peleman R. A., Pauwels R. A. The potential role of tumour necrosis factor alpha in asthma. Clin Exp Allergy. 1993 Apr;23(4):247–250. doi: 10.1111/j.1365-2222.1993.tb00317.x. [DOI] [PubMed] [Google Scholar]
  15. Laitinen L. A., Heino M., Laitinen A., Kava T., Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis. 1985 Apr;131(4):599–606. doi: 10.1164/arrd.1985.131.4.599. [DOI] [PubMed] [Google Scholar]
  16. Lamas A. M., Mulroney C. M., Schleimer R. P. Studies on the adhesive interaction between purified human eosinophils and cultured vascular endothelial cells. J Immunol. 1988 Mar 1;140(5):1500–1505. [PubMed] [Google Scholar]
  17. Lansing M. W., Ahmed A., Cortes A., Sielczak M. W., Wanner A., Abraham W. M. Oxygen radicals contribute to antigen-induced airway hyperresponsiveness in conscious sheep. Am Rev Respir Dis. 1993 Feb;147(2):321–326. doi: 10.1164/ajrccm/147.2.321. [DOI] [PubMed] [Google Scholar]
  18. Lugnier C., Schini V. B. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells. Biochem Pharmacol. 1990 Jan 1;39(1):75–84. doi: 10.1016/0006-2952(90)90650-a. [DOI] [PubMed] [Google Scholar]
  19. Nemoz G., Prigent A. F., Moueqqit M., Fougier S., Macovschi O., Pacheco H. Selective inhibition of one of the cyclic AMP phosphodiesterases from rat brain by the neurotropic compound rolipram. Biochem Pharmacol. 1985 Aug 15;34(16):2997–3000. doi: 10.1016/0006-2952(85)90029-2. [DOI] [PubMed] [Google Scholar]
  20. Pick E., Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226. doi: 10.1016/0022-1759(81)90138-1. [DOI] [PubMed] [Google Scholar]
  21. Pober J. S., Slowik M. R., De Luca L. G., Ritchie A. J. Elevated cyclic AMP inhibits endothelial cell synthesis and expression of TNF-induced endothelial leukocyte adhesion molecule-1, and vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1. J Immunol. 1993 Jun 1;150(11):5114–5123. [PubMed] [Google Scholar]
  22. Semmler J., Wachtel H., Endres S. The specific type IV phosphodiesterase inhibitor rolipram suppresses tumor necrosis factor-alpha production by human mononuclear cells. Int J Immunopharmacol. 1993 Apr;15(3):409–413. doi: 10.1016/0192-0561(93)90052-z. [DOI] [PubMed] [Google Scholar]
  23. Souness J. E., Carter C. M., Diocee B. K., Hassall G. A., Wood L. J., Turner N. C. Characterization of guinea-pig eosinophil phosphodiesterase activity. Assessment of its involvement in regulating superoxide generation. Biochem Pharmacol. 1991 Jul 25;42(4):937–945. doi: 10.1016/0006-2952(91)90056-b. [DOI] [PubMed] [Google Scholar]
  24. Souness J. E., Diocee B. K., Martin W., Moodie S. A. Pig aortic endothelial-cell cyclic nucleotide phosphodiesterases. Use of phosphodiesterase inhibitors to evaluate their roles in regulating cyclic nucleotide levels in intact cells. Biochem J. 1990 Feb 15;266(1):127–132. doi: 10.1042/bj2660127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Torphy T. J., Cieslinski L. B. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol. 1990 Feb;37(2):206–214. [PubMed] [Google Scholar]
  26. Torphy T. J., Livi G. P., Balcarek J. M., White J. R., Chilton F. H., Undem B. J. Therapeutic potential of isozyme-selective phosphodiesterase inhibitors in the treatment of asthma. Adv Second Messenger Phosphoprotein Res. 1992;25:289–305. [PubMed] [Google Scholar]
  27. Torphy T. J., Stadel J. M., Burman M., Cieslinski L. B., McLaughlin M. M., White J. R., Livi G. P. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J Biol Chem. 1992 Jan 25;267(3):1798–1804. [PubMed] [Google Scholar]
  28. Torphy T. J., Undem B. J. Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax. 1991 Jul;46(7):512–523. doi: 10.1136/thx.46.7.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Underwood D. C., Osborn R. R., Novak L. B., Matthews J. K., Newsholme S. J., Undem B. J., Hand J. M., Torphy T. J. Inhibition of antigen-induced bronchoconstriction and eosinophil infiltration in the guinea pig by the cyclic AMP-specific phosphodiesterase inhibitor, rolipram. J Pharmacol Exp Ther. 1993 Jul;266(1):306–313. [PubMed] [Google Scholar]
  30. Venge P., Dahl R., Fredens K., Peterson C. G. Epithelial injury by human eosinophils. Am Rev Respir Dis. 1988 Dec;138(6 Pt 2):S54–S57. doi: 10.1164/ajrccm/138.6_Pt_2.S54. [DOI] [PubMed] [Google Scholar]
  31. Weishaar R. E., Cain M. H., Bristol J. A. A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity. J Med Chem. 1985 May;28(5):537–545. doi: 10.1021/jm50001a001. [DOI] [PubMed] [Google Scholar]
  32. Yoshikawa S., Kayes S. G., Parker J. C. Eosinophils increase lung microvascular permeability via the peroxidase-hydrogen peroxide-halide system. Bronchoconstriction and vasoconstriction unaffected by eosinophil peroxidase inhibition. Am Rev Respir Dis. 1993 Apr;147(4):914–920. doi: 10.1164/ajrccm/147.4.914. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES