Abstract
Current evidence suggests that O2- and H2O2 injure cells as a result of the generation of a more potent oxidizing species. In addition to O2- and H2O2, the third essential component of the complex that mediates the lethal cell injury is a cellular source of ferric iron. The hypothesis most consistent with all the available data suggests that O2- reduces a cellular source of ferric to ferrous iron, and the latter then reacts with H2O2 to produce a more potent oxidizing species, like the .OH or an equivalently reactive species. In turn, .OH initiates the peroxidative decomposition of the phospholipids of cellular membranes. .OH also damages the inner mitochondrial membrane. Upon mitochondrial deenergization, a sequence of events is initiated that similarly leads to the loss of viability of the cell. DNA represents a third cellular target of .OH. Depending on the cell type, oxidative DNA damage can be coupled to cell killing through a mechanism related to the activation of poly (ADP-ribose) polymerase.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellomo G., Jewell S. A., Thor H., Orrenius S. Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6842–6846. doi: 10.1073/pnas.79.22.6842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellomo G., Mirabelli F., Richelmi P., Orrenius S. Critical role of sulfhydryl group(s) in ATP-dependent Ca2+ sequestration by the plasma membrane fraction from rat liver. FEBS Lett. 1983 Oct 31;163(1):136–139. doi: 10.1016/0014-5793(83)81180-6. [DOI] [PubMed] [Google Scholar]
- Bellomo G., Orrenius S. Altered thiol and calcium homeostasis in oxidative hepatocellular injury. Hepatology. 1985 Sep-Oct;5(5):876–882. doi: 10.1002/hep.1840050529. [DOI] [PubMed] [Google Scholar]
- Bellomo G., Thor H., Orrenius S. Increase in cytosolic Ca2+ concentration during t-butyl hydroperoxide metabolism by isolated hepatocytes involves NADPH oxidation and mobilization of intracellular Ca2+ stores. FEBS Lett. 1984 Mar 12;168(1):38–42. doi: 10.1016/0014-5793(84)80202-1. [DOI] [PubMed] [Google Scholar]
- Biemond P., Swaak A. J., Beindorff C. M., Koster J. F. Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical-induced tissue destruction during ischaemia and inflammation. Biochem J. 1986 Oct 1;239(1):169–173. doi: 10.1042/bj2390169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantoni O., Murray D., Meyn R. E. Induction and repair of DNA single-strand breaks in EM9 mutant CHO cells treated with hydrogen peroxide. Chem Biol Interact. 1987;63(1):29–38. doi: 10.1016/0009-2797(87)90102-5. [DOI] [PubMed] [Google Scholar]
- Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
- Casini A. F., Pompella A., Comporti M. Liver glutathione depletion induced by bromobenzene, iodobenzene, and diethylmaleate poisoning and its relation to lipid peroxidation and necrosis. Am J Pathol. 1985 Feb;118(2):225–237. [PMC free article] [PubMed] [Google Scholar]
- Casini A., Giorli M., Hyland R. J., Serroni A., Gilfor D., Farber J. L. Mechanisms of cell injury in the killing of cultured hepatocytes by bromobenzene. J Biol Chem. 1982 Jun 25;257(12):6721–6728. [PubMed] [Google Scholar]
- Coleman J. B., Casini A. F., Serroni A., Farber J. L. Evidence for the participation of activated oxygen species and the resulting peroxidation of lipids in the killing of cultured hepatocytes by aryl halides. Toxicol Appl Pharmacol. 1990 Sep 15;105(3):393–402. doi: 10.1016/0041-008x(90)90143-i. [DOI] [PubMed] [Google Scholar]
- Coleman J. B., Gilfor D., Farber J. L. Dissociation of the accumulation of single-strand breaks in DNA from the killing of cultured hepatocytes by an oxidative stress. Mol Pharmacol. 1989 Jul;36(1):193–200. [PubMed] [Google Scholar]
- Di Monte D., Ross D., Bellomo G., Eklöw L., Orrenius S. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch Biochem Biophys. 1984 Dec;235(2):334–342. doi: 10.1016/0003-9861(84)90206-6. [DOI] [PubMed] [Google Scholar]
- Farber J. L. Biochemical mechanisms of toxic cell injury. Klin Wochenschr. 1986;64 (Suppl 7):142–143. [PubMed] [Google Scholar]
- Farber J. L., Leonard T. B., Kyle M. E., Nakae D., Serroni A., Rogers S. A. Peroxidation-dependent and peroxidation-independent mechanisms by which acetaminophen kills cultured rat hepatocytes. Arch Biochem Biophys. 1988 Dec;267(2):640–650. doi: 10.1016/0003-9861(88)90072-0. [DOI] [PubMed] [Google Scholar]
- Fariss M. W., Olafsdottir K., Reed D. J. Extracellular calcium protects isolated rat hepatocytes from injury. Biochem Biophys Res Commun. 1984 May 31;121(1):102–110. doi: 10.1016/0006-291x(84)90693-4. [DOI] [PubMed] [Google Scholar]
- Fariss M. W., Pascoe G. A., Reed D. J. Vitamin E reversal of the effect of extracellular calcium on chemically induced toxicity in hepatocytes. Science. 1985 Feb 15;227(4688):751–754. doi: 10.1126/science.3918345. [DOI] [PubMed] [Google Scholar]
- Fariss M. W., Reed D. J. Mechanism of chemical-induced toxicity. II. Role of extracellular calcium. Toxicol Appl Pharmacol. 1985 Jun 30;79(2):296–306. doi: 10.1016/0041-008x(85)90351-5. [DOI] [PubMed] [Google Scholar]
- Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987 Nov;1(5):358–364. [PubMed] [Google Scholar]
- Horton A. A., Fairhurst S. Lipid peroxidation and mechanisms of toxicity. Crit Rev Toxicol. 1987;18(1):27–79. doi: 10.3109/10408448709089856. [DOI] [PubMed] [Google Scholar]
- Imlay J. A., Chin S. M., Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1988 Apr 29;240(4852):640–642. doi: 10.1126/science.2834821. [DOI] [PubMed] [Google Scholar]
- Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
- Jaeschke H., Kleinwaechter C., Wendel A. The role of acrolein in allyl alcohol-induced lipid peroxidation and liver cell damage in mice. Biochem Pharmacol. 1987 Jan 1;36(1):51–57. doi: 10.1016/0006-2952(87)90381-9. [DOI] [PubMed] [Google Scholar]
- Jewell S. A., Bellomo G., Thor H., Orrenius S., Smith M. Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis. Science. 1982 Sep 24;217(4566):1257–1259. doi: 10.1126/science.7112127. [DOI] [PubMed] [Google Scholar]
- Kyle M. E., Nakae D., Sakaida I., Miccadei S., Farber J. L. Endocytosis of superoxide dismutase is required in order for the enzyme to protect hepatocytes from the cytotoxicity of hydrogen peroxide. J Biol Chem. 1988 Mar 15;263(8):3784–3789. [PubMed] [Google Scholar]
- Kyle M. E., Nakae D., Sakaida S., Serroni A., Farber J. L. Protein thiol depletion and the killing of cultured hepatocytes by hydrogen peroxide. Biochem Pharmacol. 1989 Nov 1;38(21):3797–3805. doi: 10.1016/0006-2952(89)90588-1. [DOI] [PubMed] [Google Scholar]
- Kyle M. E., Sakaida I., Serroni A., Farber J. L. Metabolism of acetaminophen by cultured rat hepatocytes. Depletion of protein thiol groups without any loss of viability. Biochem Pharmacol. 1990 Sep 15;40(6):1211–1218. doi: 10.1016/0006-2952(90)90385-x. [DOI] [PubMed] [Google Scholar]
- Leadon S. A., Stampfer M. R., Bartley J. Production of oxidative DNA damage during the metabolic activation of benzo[a]pyrene in human mammary epithelial cells correlates with cell killing. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4365–4368. doi: 10.1073/pnas.85.12.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucchesi B. R., Mullane K. M. Leukocytes and ischemia-induced myocardial injury. Annu Rev Pharmacol Toxicol. 1986;26:201–224. doi: 10.1146/annurev.pa.26.040186.001221. [DOI] [PubMed] [Google Scholar]
- Masaki N., Kyle M. E., Farber J. L. tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Arch Biochem Biophys. 1989 Mar;269(2):390–399. doi: 10.1016/0003-9861(89)90122-7. [DOI] [PubMed] [Google Scholar]
- Masaki N., Kyle M. E., Serroni A., Farber J. L. Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch Biochem Biophys. 1989 May 1;270(2):672–680. doi: 10.1016/0003-9861(89)90550-x. [DOI] [PubMed] [Google Scholar]
- Masaki N., Sakaida I., Farber J. L. Protease inhibitors do not prevent the killing of cultured hepatocytes by cystamine. Biochem Biophys Res Commun. 1989 Aug 30;163(1):412–417. doi: 10.1016/0006-291x(89)92151-7. [DOI] [PubMed] [Google Scholar]
- McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
- Mello Filho A. C., Meneghini R. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim Biophys Acta. 1984 Feb 24;781(1-2):56–63. doi: 10.1016/0167-4781(84)90123-4. [DOI] [PubMed] [Google Scholar]
- Miccadei S., Kyle M. E., Gilfor D., Farber J. L. Toxic consequence of the abrupt depletion of glutathione in cultured rat hepatocytes. Arch Biochem Biophys. 1988 Sep;265(2):311–320. doi: 10.1016/0003-9861(88)90133-6. [DOI] [PubMed] [Google Scholar]
- Moore M., Thor H., Moore G., Nelson S., Moldéus P., Orrenius S. The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J Biol Chem. 1985 Oct 25;260(24):13035–13040. [PubMed] [Google Scholar]
- Nakae D., Yamamoto K., Yoshiji H., Kinugasa T., Maruyama H., Farber J. L., Konishi Y. Liposome-encapsulated superoxide dismutase prevents liver necrosis induced by acetaminophen. Am J Pathol. 1990 Apr;136(4):787–795. [PMC free article] [PubMed] [Google Scholar]
- Nakae D., Yoshiji H., Amanuma T., Kinugasa T., Farber J. L., Konishi Y. Endocytosis-independent uptake of liposome-encapsulated superoxide dismutase prevents the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch Biochem Biophys. 1990 Jun;279(2):315–319. doi: 10.1016/0003-9861(90)90497-m. [DOI] [PubMed] [Google Scholar]
- Nicotera P., Bellomo G., Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol. 1992;32:449–470. doi: 10.1146/annurev.pa.32.040192.002313. [DOI] [PubMed] [Google Scholar]
- Nicotera P., Hartzell P., Baldi C., Svensson S. A., Bellomo G., Orrenius S. Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a nonlysosomal proteolytic system. J Biol Chem. 1986 Nov 5;261(31):14628–14635. [PubMed] [Google Scholar]
- Nicotera P., Moore M., Mirabelli F., Bellomo G., Orrenius S. Inhibition of hepatocyte plasma membrane Ca2+-ATPase activity by menadione metabolism and its restoration by thiols. FEBS Lett. 1985 Feb 11;181(1):149–153. doi: 10.1016/0014-5793(85)81131-5. [DOI] [PubMed] [Google Scholar]
- Pascoe G. A., Olafsdottir K., Reed D. J. Vitamin E protection against chemical-induced cell injury. I. Maintenance of cellular protein thiols as a cytoprotective mechanism. Arch Biochem Biophys. 1987 Jul;256(1):150–158. doi: 10.1016/0003-9861(87)90433-4. [DOI] [PubMed] [Google Scholar]
- Rothman R. J., Serroni A., Farber J. L. Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin, that is involved in oxidative cell injury. Mol Pharmacol. 1992 Oct;42(4):703–710. [PubMed] [Google Scholar]
- Rush G. F., Gorski J. R., Ripple M. G., Sowinski J., Bugelski P., Hewitt W. R. Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol Appl Pharmacol. 1985 May;78(3):473–483. doi: 10.1016/0041-008x(85)90255-8. [DOI] [PubMed] [Google Scholar]
- Sakaida I., Kyle M. E., Farber J. L. Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress. Mol Pharmacol. 1990 Mar;37(3):435–442. [PubMed] [Google Scholar]
- Sakaida I., Thomas A. P., Farber J. L. Increases in cytosolic calcium ion concentration can be dissociated from the killing of cultured hepatocytes by tert-butyl hydroperoxide. J Biol Chem. 1991 Jan 15;266(2):717–722. [PubMed] [Google Scholar]
- Schraufstatter I. U., Hinshaw D. B., Hyslop P. A., Spragg R. G., Cochrane C. G. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest. 1986 Apr;77(4):1312–1320. doi: 10.1172/JCI112436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schraufstatter I. U., Hyslop P. A., Hinshaw D. B., Spragg R. G., Sklar L. A., Cochrane C. G. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4908–4912. doi: 10.1073/pnas.83.13.4908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schraufstätter I., Hyslop P. A., Jackson J. H., Cochrane C. G. Oxidant-induced DNA damage of target cells. J Clin Invest. 1988 Sep;82(3):1040–1050. doi: 10.1172/JCI113660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. T., Thor H., Orrenius S. The role of lipid peroxidation in the toxicity of foreign compounds to liver cells. Biochem Pharmacol. 1983 Mar 1;32(5):763–764. doi: 10.1016/0006-2952(83)90573-7. [DOI] [PubMed] [Google Scholar]
- Snyder J. W., Pastorino J. G., Thomas A. P., Hoek J. B., Farber J. L. ATP synthase activity is required for fructose to protect cultured hepatocytes from the toxicity of cyanide. Am J Physiol. 1993 Mar;264(3 Pt 1):C709–C714. doi: 10.1152/ajpcell.1993.264.3.C709. [DOI] [PubMed] [Google Scholar]
- Starke P. E., Farber J. L. Endogenous defenses against the cytotoxicity of hydrogen peroxide in cultured rat hepatocytes. J Biol Chem. 1985 Jan 10;260(1):86–92. [PubMed] [Google Scholar]
- Starke P. E., Farber J. L. Ferric iron and superoxide ions are required for the killing of cultured hepatocytes by hydrogen peroxide. Evidence for the participation of hydroxyl radicals formed by an iron-catalyzed Haber-Weiss reaction. J Biol Chem. 1985 Aug 25;260(18):10099–10104. [PubMed] [Google Scholar]
- Starke P. E., Hoek J. B., Farber J. L. Calcium-dependent and calcium-independent mechanisms of irreversible cell injury in cultured hepatocytes. J Biol Chem. 1986 Mar 5;261(7):3006–3012. [PubMed] [Google Scholar]
- Teebor G. W., Boorstein R. J., Cadet J. The repairability of oxidative free radical mediated damage to DNA: a review. Int J Radiat Biol. 1988 Aug;54(2):131–150. doi: 10.1080/09553008814551591. [DOI] [PubMed] [Google Scholar]
- Thomas C. E., Aust S. D. Reductive release of iron from ferritin by cation free radicals of paraquat and other bipyridyls. J Biol Chem. 1986 Oct 5;261(28):13064–13070. [PubMed] [Google Scholar]
- Thomas C. E., Morehouse L. A., Aust S. D. Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem. 1985 Mar 25;260(6):3275–3280. [PubMed] [Google Scholar]
- Thomas C. E., Reed D. J. Effect of extracellular Ca++ omission on isolated hepatocytes. I. Induction of oxidative stress and cell injury. J Pharmacol Exp Ther. 1988 May;245(2):493–500. [PubMed] [Google Scholar]
- Thor H., Smith M. T., Hartzell P., Bellomo G., Jewell S. A., Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982 Oct 25;257(20):12419–12425. [PubMed] [Google Scholar]
- Tribble D. L., Aw T. Y., Jones D. P. The pathophysiological significance of lipid peroxidation in oxidative cell injury. Hepatology. 1987 Mar-Apr;7(2):377–386. doi: 10.1002/hep.1840070227. [DOI] [PubMed] [Google Scholar]
- Yamamoto K., Farber J. L. Metabolism of pyridine nucleotides in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide. Biochem Pharmacol. 1992 Mar 3;43(5):1119–1126. doi: 10.1016/0006-2952(92)90620-x. [DOI] [PubMed] [Google Scholar]
- Yamamoto K., Tsukidate K., Farber J. L. Differing effects of the inhibition of poly(ADP-ribose) polymerase on the course of oxidative cell injury in hepatocytes and fibroblasts. Biochem Pharmacol. 1993 Aug 3;46(3):483–491. doi: 10.1016/0006-2952(93)90525-2. [DOI] [PubMed] [Google Scholar]