Abstract
Immune information in the form of inflammatory mediators directs phagocyte locomotion and increases expression of opsonin receptors such that contact with an opsonized microbe results in receptor ligation and activation of microbicidal metabolism. Carbohydrate dehydrogenation and O2 consumption feed reactions that effectively lower the spin quantum number (S) of O2 from 1 to 1/2 and finally to 0. Oxidase-catalyzed univalent reduction of O2 (S = 1; triplet multiplicity) yields hydrodioxylic acid (HO2) and its conjugate base superoxide, O2- (S = 1/2; doublet multiplicity). Acid or enzymatic disproportionation of superoxide yields H2O2 (S = 0; singlet multiplicity). Haloperoxidase catalyzes H2O2-dependent oxidation of Cl- yielding HOCl (S = 0), and reaction of HOCl with H2O2 yields singlet molecular oxygen, 1O2 (S = 0; singlet multiplicity). The Wigner spin conservation rule restricts direct reaction of S = 1 O2 with S = 0 organic molecules. Lowering the S of O2 overcomes this spin restriction and allows microbicidal combustion. High exergonicity dioxygenation reactions yield electronically excited carbonyl products that relax by photon emission, i.e., phagocyte luminescence. Addition of high quantum yield substrates susceptible to spin allowed dioxygenation, i.e., chemiluminigenic substrates, greatly increases detection sensitivity and defines the nature of the oxygenating agent. Measurement of luminescence allows high sensitivity, real-time, and substrate-specific differential analysis of phagocyte dioxygenating activities. Under assay conditions where immune mediator and opsonin exposure are controlled, luminescence analysis of the initial phase of opsonin-stimulated oxygenation activity allows functional assessment of the opsonin receptor expression per circulating phagocyte and can be used to gauge the in vivo state of immune activation.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. C. Halide dependence of the myeloperoxidase-mediated antimicrobial system of the polymorphonuclear leukocyte in the phenomenon of electronic excitation. Biochem Biophys Res Commun. 1975 Apr 7;63(3):675–683. doi: 10.1016/s0006-291x(75)80437-2. [DOI] [PubMed] [Google Scholar]
- Allen R. C., Loose L. D. Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem Biophys Res Commun. 1976 Mar 8;69(1):245–252. doi: 10.1016/s0006-291x(76)80299-9. [DOI] [PubMed] [Google Scholar]
- Allen R. C. Phagocytic leukocyte oxygenation activities and chemiluminescence: a kinetic approach to analysis. Methods Enzymol. 1986;133:449–493. doi: 10.1016/0076-6879(86)33085-4. [DOI] [PubMed] [Google Scholar]
- Allen R. C. Reduced, radical, and excited state oxygen in leukocyte microbicidal activity. Front Biol. 1979;48:197–233. [PubMed] [Google Scholar]
- Allen R. C., Stjernholm R. L., Steele R. H. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun. 1972 May 26;47(4):679–684. doi: 10.1016/0006-291x(72)90545-1. [DOI] [PubMed] [Google Scholar]
- Allen R. C. The role of PH in the chemiluminescent response of the myeloperoxidase-halide-HOOH antimicrobial system. Biochem Biophys Res Commun. 1975 Apr 7;63(3):684–691. doi: 10.1016/s0006-291x(75)80438-4. [DOI] [PubMed] [Google Scholar]
- Allen R. C., Yevich S. J., Orth R. W., Steele R. H. The superoxide anion and singlet molecular oxygen: their role in the microbicidal activity of the polymorphonuclear leukocyte. Biochem Biophys Res Commun. 1974 Oct 8;60(3):909–917. doi: 10.1016/0006-291x(74)90401-x. [DOI] [PubMed] [Google Scholar]
- Babior B. M., Curnutte J. T., Kipnes B. S. Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes. J Clin Invest. 1975 Oct;56(4):1035–1042. doi: 10.1172/JCI108150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DURE L. S., CORMIER M. J. STUDIES ON THE BIOLUMINESCENCE OF BALANOGLOSSUS BIMINIENSIS EXTRACTS. 3. A KINETIC COMPARISON OF LUMINESCENT AND NONLUMINESCENT PEROXIDATION REACTIONS AND A PROPOSED MECHANISM FOR PEROXIDASE ACTION. J Biol Chem. 1964 Jul;239:2351–2359. [PubMed] [Google Scholar]
- Kanofsky J. R., Hoogland H., Wever R., Weiss S. J. Singlet oxygen production by human eosinophils. J Biol Chem. 1988 Jul 15;263(20):9692–9696. [PubMed] [Google Scholar]
- Kanofsky J. R. Singlet oxygen production by lactoperoxidase. J Biol Chem. 1983 May 25;258(10):5991–5993. [PubMed] [Google Scholar]
- Khan A. U. Singlet molecular oxygen from superoxide anion and sensitized fluorescence of organic molecules. Science. 1970 Apr 24;168(3930):476–477. doi: 10.1126/science.168.3930.476. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 1968 Jun;95(6):2131–2138. doi: 10.1128/jb.95.6.2131-2138.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klebanoff S. J. Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes. Science. 1970 Sep 11;169(3950):1095–1097. doi: 10.1126/science.169.3950.1095. [DOI] [PubMed] [Google Scholar]
- Koppenol W. H. Reactions involving singlet oxygen and the superoxide anion. Nature. 1976 Jul 29;262(5567):420–421. doi: 10.1038/262420a0. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Rossi F., Romeo D., Patriarca P. Mechanism of phagocytosis-associated oxidative metabolism in polymorphonuclear leucocytes and macrophages. J Reticuloendothel Soc. 1972 Aug;12(2):127–149. [PubMed] [Google Scholar]
- SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
- Saran M., Michel C., Bors W. Reaction of NO with O2-. implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic Res Commun. 1990;10(4-5):221–226. doi: 10.3109/10715769009149890. [DOI] [PubMed] [Google Scholar]
- Steinbeck M. J., Khan A. U., Karnovsky M. J. Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem. 1992 Jul 5;267(19):13425–13433. [PubMed] [Google Scholar]
- Thorpe G. H., Kricka L. J. Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase. Methods Enzymol. 1986;133:331–353. doi: 10.1016/0076-6879(86)33078-7. [DOI] [PubMed] [Google Scholar]
- Vandermeer T. J., Menconi M. J., O'Sullivan B. P., Larkin V. A., Wang H., Kradin R. L., Fink M. P. Bactericidal/permeability-increasing protein ameliorates acute lung injury in porcine endotoxemia. J Appl Physiol (1985) 1994 May;76(5):2006–2014. doi: 10.1152/jappl.1994.76.5.2006. [DOI] [PubMed] [Google Scholar]
- Wang J. F., Komarov P., Sies H., de Groot H. Contribution of nitric oxide synthase to luminol-dependent chemiluminescence generated by phorbol-ester-activated Kupffer cells. Biochem J. 1991 Oct 1;279(Pt 1):311–314. doi: 10.1042/bj2790311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wollert P. S., Menconi M. J., O'Sullivan B. P., Wang H., Larkin V., Fink M. P. LY255283, a novel leukotriene B4 receptor antagonist, limits activation of neutrophils and prevents acute lung injury induced by endotoxin in pigs. Surgery. 1993 Aug;114(2):191–198. [PubMed] [Google Scholar]