Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1993 Mar;99:39–44. doi: 10.1289/ehp.99-1567046

Adducted proteins for identification of endogenous electrophiles.

M Törnqvist 1, A Kautiainen 1
PMCID: PMC1567046  PMID: 8319656

Abstract

Chemically reactive compounds in tissues can be monitored through their products of reaction with biomacromolecules. For the purpose of in vivo dose monitoring, hemoglobin (Hb) has been preferred to DNA because of its well-defined life span and more facile chemical identification of adducts. Through the N-alkyl Edman method, adducts to the N-terminals (valines) of the globin chains are measured mass spectrometrically with high sensitivity. In studies of low molecular weight adducts from occupational exposures or tobacco smoke, background levels were found in nonexposed control persons. In some cases the origin of these adducts could be determined. For instance, the 2-hydroxyethyl adduct has been shown to originate from ethylene oxide, a metabolite of endogenously produced ethene. The measured level, about 20 pmole/g globin, agrees well with the ethylene oxide dose calculated from expired ethene. Animal studies indicate contributions from the intestinal flora and dietary factors. An average background level of about 200 pmole/g globin of methylvaline has been observed in unexposed humans. From reaction-kinetic studies of S-adenosylmethionine (SAM), it has been shown that the background mainly originates from SAM. In twin studies, a genetic influence on the level has been shown. Furthermore, a contribution from tobacco smoking to the level was demonstrated in these studies. Certain aldehydes, e.g., malonaldehyde, have been shown to be related to dietary factors and lipid peroxidation. These studies show the usefulness of the method in a search for reactive compounds in the body, with the ultimate goal of assessing the total genotoxic load.

Full text

PDF
39

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman R., Saul R. L., Ames B. N. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2706–2708. doi: 10.1073/pnas.85.8.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey E., Connors T. A., Farmer P. B., Gorf S. M., Rickard J. Methylation of cysteine in hemoglobin following exposure to methylating agents. Cancer Res. 1981 Jun;41(6):2514–2517. [PubMed] [Google Scholar]
  3. Baraona E., Julkunen R., Tannenbaum L., Lieber C. S. Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats. Gastroenterology. 1986 Jan;90(1):103–110. doi: 10.1016/0016-5085(86)90081-8. [DOI] [PubMed] [Google Scholar]
  4. Barber J. R., Morimoto B. H., Brunauer L. S., Clarke S. Metabolism of S-adenosyl-L-methionine in intact human erythrocytes. Biochim Biophys Acta. 1986 May 29;886(3):361–372. doi: 10.1016/0167-4889(86)90171-0. [DOI] [PubMed] [Google Scholar]
  5. Barrows L. R., Magee P. N. Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. Carcinogenesis. 1982;3(3):349–351. doi: 10.1093/carcin/3.3.349. [DOI] [PubMed] [Google Scholar]
  6. Basu A. K., Marnett L. J. Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis. 1983;4(3):331–333. doi: 10.1093/carcin/4.3.331. [DOI] [PubMed] [Google Scholar]
  7. Bergmark E., Belew M., Osterman-Golkar S. Separation and enrichment of alkylated globin chains as a means of improving the sensitivity of hemoglobin adduct measurements. Acta Chem Scand. 1990 Jul;44(6):630–635. doi: 10.3891/acta.chem.scand.44-0630. [DOI] [PubMed] [Google Scholar]
  8. Emerit I., Khan S. H., Cerutti P. A. Treatment of lymphocyte cultures with a hypoxanthine-xanthine oxidase system induces the formation of transferable clastogenic material. J Free Radic Biol Med. 1985;1(1):51–57. doi: 10.1016/0748-5514(85)90029-7. [DOI] [PubMed] [Google Scholar]
  9. Farmer P. B., Bailey E., Gorf S. M., Törnqvist M., Osterman-Golkar S., Kautiainen A., Lewis-Enright D. P. Monitoring human exposure to ethylene oxide by the determination of haemoglobin adducts using gas chromatography-mass spectrometry. Carcinogenesis. 1986 Apr;7(4):637–640. doi: 10.1093/carcin/7.4.637. [DOI] [PubMed] [Google Scholar]
  10. Farmer P. B., Neumann H. G., Henschler D. Estimation of exposure of man to substances reacting covalently with macromolecules. Arch Toxicol. 1987 Jun;60(4):251–260. doi: 10.1007/BF01234663. [DOI] [PubMed] [Google Scholar]
  11. Filser J. G., Denk B., Törnqvist M., Kessler W., Ehrenberg L. Pharmacokinetics of ethylene in man; body burden with ethylene oxide and hydroxyethylation of hemoglobin due to endogenous and environmental ethylene. Arch Toxicol. 1992;66(3):157–163. doi: 10.1007/BF01974008. [DOI] [PubMed] [Google Scholar]
  12. Gambardella R. L., Richardson K. E. The pathways of oxalate formation from phenylalanine, tyrosine, tryptophan and ascorbic acid in the rat. Biochim Biophys Acta. 1977 Aug 25;499(1):156–168. doi: 10.1016/0304-4165(77)90238-0. [DOI] [PubMed] [Google Scholar]
  13. Hamberg M., Samuelsson B. Oxygenation of unsaturated fatty acids by the vesicular gland of sheep. J Biol Chem. 1967 Nov 25;242(22):5344–5354. [PubMed] [Google Scholar]
  14. He S. M., Lambert B. Acetaldehyde-induced mutation at the hprt locus in human lymphocytes in vitro. Environ Mol Mutagen. 1990;16(2):57–63. doi: 10.1002/em.2850160202. [DOI] [PubMed] [Google Scholar]
  15. Högstedt B., Bergmark E., Törnqvist M., Osterman-Golkar S. Chromosomal aberrations and micronuclei in lymphocytes in relation to alkylation of hemoglobin in workers exposed to ethylene oxide and propylene oxide. Hereditas. 1990;113(2):133–138. doi: 10.1111/j.1601-5223.1990.tb00076.x. [DOI] [PubMed] [Google Scholar]
  16. Kautiainen A. Determination of hemoglobin adducts from aldehydes formed during lipid peroxidation in vitro. Chem Biol Interact. 1992 Jun 15;83(1):55–63. doi: 10.1016/0009-2797(92)90091-x. [DOI] [PubMed] [Google Scholar]
  17. Kautiainen A., Törnqvist M., Anderstam B., Vaca C. E. In vivo hemoglobin dosimetry of malonaldehyde and ethene in mice after induction of lipid peroxidation. Effects of membrane lipid fatty acid composition. Carcinogenesis. 1991 Jun;12(6):1097–1102. doi: 10.1093/carcin/12.6.1097. [DOI] [PubMed] [Google Scholar]
  18. Kautiainen A., Törnqvist M. Monitoring exposure to simple epoxides and alkenes through gas chromatographic determination of hemoglobin adducts. Int Arch Occup Environ Health. 1991;63(1):27–31. doi: 10.1007/BF00406194. [DOI] [PubMed] [Google Scholar]
  19. Kautiainen A., Törnqvist M., Svensson K., Osterman-Golkar S. Adducts of malonaldehyde and a few other aldehydes to hemoglobin. Carcinogenesis. 1989 Nov;10(11):2123–2130. doi: 10.1093/carcin/10.11.2123. [DOI] [PubMed] [Google Scholar]
  20. Lee D. M. Malondialdehyde formation in stored plasma. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1663–1672. doi: 10.1016/s0006-291x(80)80090-8. [DOI] [PubMed] [Google Scholar]
  21. San George R. C., Hoberman H. D. Reaction of acetaldehyde with hemoglobin. J Biol Chem. 1986 May 25;261(15):6811–6821. [PubMed] [Google Scholar]
  22. Segerbäck D. Reaction products in hemoglobin and DNA after in vitro treatment with ethylene oxide and N-(2-hydroxyethyl)-N-nitrosourea. Carcinogenesis. 1990 Feb;11(2):307–312. doi: 10.1093/carcin/11.2.307. [DOI] [PubMed] [Google Scholar]
  23. Stevens V. J., Fantl W. J., Newman C. B., Sims R. V., Cerami A., Peterson C. M. Acetaldehyde adducts with hemoglobin. J Clin Invest. 1981 Feb;67(2):361–369. doi: 10.1172/JCI110043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Törnqvist M., Ehrenberg L. Approaches to risk assessment of automotive engine exhausts. IARC Sci Publ. 1990;(104):277–287. [PubMed] [Google Scholar]
  25. Törnqvist M. Formation of reactive species that lead to hemoglobin adducts during storage of blood samples. Carcinogenesis. 1990 Jan;11(1):51–54. doi: 10.1093/carcin/11.1.51. [DOI] [PubMed] [Google Scholar]
  26. Törnqvist M., Gustafsson B., Kautiainen A., Harms-Ringdahl M., Granath F., Ehrenberg L. Unsaturated lipids and intestinal bacteria as sources of endogenous production of ethene and ethylene oxide. Carcinogenesis. 1989 Jan;10(1):39–41. doi: 10.1093/carcin/10.1.39. [DOI] [PubMed] [Google Scholar]
  27. Törnqvist M., Kautiainen A., Gatz R. N., Ehrenberg L. Hemoglobin adducts in animals exposed to gasoline and diesel exhausts. 1. Alkenes. J Appl Toxicol. 1988 Jun;8(3):159–170. doi: 10.1002/jat.2550080303. [DOI] [PubMed] [Google Scholar]
  28. Törnqvist M., Magnusson A. L., Farmer P. B., Tang Y. S., Jeffrey A. M., Wazneh L., Beulink G. D., van der Waal H., van Sittert N. J. Ring test for low levels of N-(2-hydroxyethyl)valine in human hemoglobin. Anal Biochem. 1992 Jun;203(2):357–360. doi: 10.1016/0003-2697(92)90325-2. [DOI] [PubMed] [Google Scholar]
  29. Törnqvist M., Mowrer J., Jensen S., Ehrenberg L. Monitoring of environmental cancer initiators through hemoglobin adducts by a modified Edman degradation method. Anal Biochem. 1986 Apr;154(1):255–266. doi: 10.1016/0003-2697(86)90524-5. [DOI] [PubMed] [Google Scholar]
  30. Törnqvist M., Osterman-Golkar S., Kautiainen A., Näslund M., Calleman C. J., Ehrenberg L. Methylations in human hemoglobin. Mutat Res. 1988 Mar;204(3):521–529. doi: 10.1016/0165-1218(88)90046-8. [DOI] [PubMed] [Google Scholar]
  31. Törnqvist M., Svartengren M., Ericsson C. H. Methylations in hemoglobin from monozygotic twins discordant for cigarette smoking: hereditary and tobacco-related factors. Chem Biol Interact. 1992 Mar;82(1):91–98. doi: 10.1016/0009-2797(92)90016-e. [DOI] [PubMed] [Google Scholar]
  32. Van Sittert N. J., de Jong G., Clare M. G., Davies R., Dean B. J., Wren L. J., Wright A. S. Cytogenetic, immunological, and haematological effects in workers in an ethylene oxide manufacturing plant. Br J Ind Med. 1985 Jan;42(1):19–26. doi: 10.1136/oem.42.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. WEISSBACH A., SPRINSON D. B. The metabolism of 2-carbon compounds related to glycine. II. Ethanolamine. J Biol Chem. 1953 Aug;203(2):1031–1037. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES