Abstract
Classical conditioning of the eyeblink reflex is a relatively simple procedure for studying associative learning that was first developed for use with human subjects more than half a century ago. The use of this procedure in laboratory animals by psychologists and neuroscientists over the past 30 years has produced a powerful animal model for studying the behavioral and biological mechanisms of learning. As a result, eyeblink conditioning is beginning to be pursued as a very promising model for predicting and understanding human learning and memory disorders. Among the many advantages of this procedure are (a) the fact that it can be carried out in the same manner in both humans and laboratory animals; (b) the many ways in which it permits one to characterize changes in learning at the behavioral level; (c) the readiness with which hypotheses regarding the neurological basis of behavioral disorders can be formulated and tested; (d) the fact that it can be used in the same way across the life-span; and (e) its ability to distinguish, from normative groups, populations suffering from neurological conditions associated with impaired learning and memory, including those produced by exposure to neurotoxicants. In this article, we argue that these properties of eyeblink conditioning make it an excellent model system for studying early impairments of learning and memory in developmental neurotoxicology. We also review progress that has been made in our laboratory in developing a rodent model of infant eyeblink conditioning for this purpose.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman J. Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol. 1969 Jul;136(3):269–293. doi: 10.1002/cne.901360303. [DOI] [PubMed] [Google Scholar]
- Altman J. Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components of the granular layer. J Comp Neurol. 1972 Aug;145(4):465–513. doi: 10.1002/cne.901450403. [DOI] [PubMed] [Google Scholar]
- Berger T. W., Laham R. I., Thompson R. F. Hippocampal unit-behavior correlations during classical conditioning. Brain Res. 1980 Jul 7;193(1):229–248. doi: 10.1016/0006-8993(80)90960-9. [DOI] [PubMed] [Google Scholar]
- Berger T. W., Orr W. B. Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behav Brain Res. 1983 Apr;8(1):49–68. doi: 10.1016/0166-4328(83)90171-7. [DOI] [PubMed] [Google Scholar]
- Booze R. M., Mactutus C. F. Developmental exposure to organic lead causes permanent hippocampal damage in Fischer-344 rats. Experientia. 1990 Mar 15;46(3):292–297. doi: 10.1007/BF01951770. [DOI] [PubMed] [Google Scholar]
- Burbacher T. M., Rodier P. M., Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol. 1990 May-Jun;12(3):191–202. doi: 10.1016/0892-0362(90)90091-p. [DOI] [PubMed] [Google Scholar]
- Chase H. P., Lindsley W. F., Jr, O'Brien D. Undernutrition and cerebellar development. Nature. 1969 Feb 8;221(5180):554–555. doi: 10.1038/221554a0. [DOI] [PubMed] [Google Scholar]
- Chen S., Hillman D. E. Regulation of granule cell number by a predetermined number of Purkinje cells in development. Brain Res Dev Brain Res. 1989 Jan 1;45(1):137–147. doi: 10.1016/0165-3806(89)90015-1. [DOI] [PubMed] [Google Scholar]
- Chen S., Hillman D. E. Selective ablation of neurons by methylazoxymethanol during pre- and postnatal brain development. Exp Neurol. 1986 Oct;94(1):103–119. doi: 10.1016/0014-4886(86)90275-x. [DOI] [PubMed] [Google Scholar]
- Cintra L., Díaz-Cintra S., Galván A., Kemper T., Morgane P. J. Effects of protein undernutrition on the dentate gyrus in rats of three age groups. Brain Res. 1990 Nov 5;532(1-2):271–277. doi: 10.1016/0006-8993(90)91769-d. [DOI] [PubMed] [Google Scholar]
- Clos J., Favre C., Selme-Matrat M., Legrand J. Effects of undernutrition on cell formation in the rat brain and specially on cellular composition of the cerebellum. Brain Res. 1977 Mar 4;123(1):13–26. doi: 10.1016/0006-8993(77)90640-0. [DOI] [PubMed] [Google Scholar]
- Courchesne E. Neuroanatomic imaging in autism. Pediatrics. 1991 May;87(5 Pt 2):781–790. [PubMed] [Google Scholar]
- Diamond A. Rate of maturation of the hippocampus and the developmental progression of children's performance on the delayed non-matching to sample and visual paired comparison tasks. Ann N Y Acad Sci. 1990;608:394–433. doi: 10.1111/j.1749-6632.1990.tb48904.x. [DOI] [PubMed] [Google Scholar]
- Falkai P., Bogerts B. Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci. 1986;236(3):154–161. doi: 10.1007/BF00380943. [DOI] [PubMed] [Google Scholar]
- Forrester T. M., Yokel R. A. Comparative toxicity of intracerebroventricular and subcutaneous aluminum in the rabbit. Neurotoxicology. 1985 Fall;6(3):71–80. [PubMed] [Google Scholar]
- Francis E. Z., Kimmel C. A., Rees D. C. Workshop on the qualitative and quantitative comparability of human and animal developmental neurotoxicity: summary and implications. Neurotoxicol Teratol. 1990 May-Jun;12(3):285–292. doi: 10.1016/0892-0362(90)90101-h. [DOI] [PubMed] [Google Scholar]
- Freeman J. H., Jr, Stanton M. E. Fimbria-fornix transections disrupt the ontogeny of delayed alternation but not position discrimination in the rat. Behav Neurosci. 1991 Jun;105(3):386–395. doi: 10.1037//0735-7044.105.3.386. [DOI] [PubMed] [Google Scholar]
- Freeman J. H., Jr, Stanton M. E. Medial prefrontal cortex lesions and spatial delayed alternation in the developing rat: recovery or sparing? Behav Neurosci. 1992 Dec;106(6):924–932. doi: 10.1037//0735-7044.106.6.924. [DOI] [PubMed] [Google Scholar]
- Kimmel C. A. Quantitative approaches to human risk assessment for noncancer health effects. Neurotoxicology. 1990 Summer;11(2):189–198. [PubMed] [Google Scholar]
- Kirino T., Tamura A., Sano K. Selective vulnerability of the hippocampus to ischemia--reversible and irreversible types of ischemic cell damage. Prog Brain Res. 1985;63:39–58. doi: 10.1016/S0079-6123(08)61974-3. [DOI] [PubMed] [Google Scholar]
- Kretschmann H. J., Kammradt G., Krauthausen I., Sauer B., Wingert F. Growth of the hippocampal formation in man. Bibl Anat. 1986;(28):27–52. [PubMed] [Google Scholar]
- Lavond D. G., Hembree T. L., Thompson R. F. Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit. Brain Res. 1985 Feb 4;326(1):179–182. doi: 10.1016/0006-8993(85)91400-3. [DOI] [PubMed] [Google Scholar]
- Lewis P. D. Neuropathological effects of alcohol on the developing nervous system. Alcohol Alcohol. 1985;20(2):195–200. [PubMed] [Google Scholar]
- Lipsitt L. P. Learning processes in the human newborn. Sensitization, habituation, and classical conditioning. Ann N Y Acad Sci. 1990;608:113–127. doi: 10.1111/j.1749-6632.1990.tb48894.x. [DOI] [PubMed] [Google Scholar]
- Madeira M. D., Sousa N., Lima-Andrade M. T., Calheiros F., Cadete-Leite A., Paula-Barbosa M. M. Selective vulnerability of the hippocampal pyramidal neurons to hypothyroidism in male and female rats. J Comp Neurol. 1992 Aug 22;322(4):501–518. doi: 10.1002/cne.903220405. [DOI] [PubMed] [Google Scholar]
- Mann D. M., Yates P. O., Marcyniuk B., Ravindra C. R. The topography of plaques and tangles in Down's syndrome patients of different ages. Neuropathol Appl Neurobiol. 1986 Sep-Oct;12(5):447–457. doi: 10.1111/j.1365-2990.1986.tb00053.x. [DOI] [PubMed] [Google Scholar]
- Mauk M. D., Steinmetz J. E., Thompson R. F. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5349–5353. doi: 10.1073/pnas.83.14.5349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mauk M. D., Thompson R. F. Retention of classically conditioned eyelid responses following acute decerebration. Brain Res. 1987 Feb 10;403(1):89–95. doi: 10.1016/0006-8993(87)90126-0. [DOI] [PubMed] [Google Scholar]
- Ohlrich E. S., Ross L. E. Acquisition and differential conditioning of the eyelid response in normal and retarded children. J Exp Child Psychol. 1968 Jun;6(2):181–193. doi: 10.1016/0022-0965(68)90083-0. [DOI] [PubMed] [Google Scholar]
- Pierce D. R., West J. R. Differential deficits in regional brain growth induced by postnatal alcohol. Neurotoxicol Teratol. 1987 Mar-Apr;9(2):129–141. doi: 10.1016/0892-0362(87)90089-4. [DOI] [PubMed] [Google Scholar]
- Port R. L., Patterson M. M. Fimbrial lesions and sensory preconditioning. Behav Neurosci. 1984 Aug;98(4):584–589. doi: 10.1037//0735-7044.98.4.584. [DOI] [PubMed] [Google Scholar]
- Rakic P., Nowakowski R. S. The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol. 1981 Feb 10;196(1):99–128. doi: 10.1002/cne.901960109. [DOI] [PubMed] [Google Scholar]
- Rodier P. M. Time of exposure and time of testing in developmental neurotoxicology. Neurotoxicology. 1986 Summer;7(2):69–76. [PubMed] [Google Scholar]
- Schmajuk N. A., Christiansen B. A. Eyeblink conditioning in rats. Physiol Behav. 1990 Nov;48(5):755–758. doi: 10.1016/0031-9384(90)90221-o. [DOI] [PubMed] [Google Scholar]
- Schmajuk N. A., DiCarlo J. J. A neural network approach to hippocampal function in classical conditioning. Behav Neurosci. 1991 Feb;105(1):82–110. doi: 10.1037//0735-7044.105.1.82. [DOI] [PubMed] [Google Scholar]
- Schmaltz L. W., Theios J. Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). J Comp Physiol Psychol. 1972 May;79(2):328–333. doi: 10.1037/h0032531. [DOI] [PubMed] [Google Scholar]
- Simon R. P., Schmidley J. W., Swan J. H., Meldrum B. S. Neuronal alterations in hippocampus following severe hypoglycaemia: a light microscopic and ultrastructural study in the rat. Neuropathol Appl Neurobiol. 1986 Jan-Feb;12(1):11–26. doi: 10.1111/j.1365-2990.1986.tb00678.x. [DOI] [PubMed] [Google Scholar]
- Skelton R. W. Bilateral cerebellar lesions disrupt conditioned eyelid responses in unrestrained rats. Behav Neurosci. 1988 Aug;102(4):586–590. doi: 10.1037//0735-7044.102.4.586. [DOI] [PubMed] [Google Scholar]
- Slomianka L., Rungby J., West M. J., Danscher G., Andersen A. H. Dose-dependent bimodal effect of low-level lead exposure on the developing hippocampal region of the rat: a volumetric study. Neurotoxicology. 1989 Summer;10(2):177–190. [PubMed] [Google Scholar]
- Solomon P. R., Gottfried K. E. The septohippocampal cholinergic system and classical conditioning of the rabbit's nictitating membrane response. J Comp Physiol Psychol. 1981 Apr;95(2):322–330. doi: 10.1037/h0077779. [DOI] [PubMed] [Google Scholar]
- Solomon P. R., Groccia-Ellison M., Levine E., Blanchard S., Pendlebury W. W. Do temporal relationships in conditioning change across the life span? Perspectives from eyeblink conditioning in humans and rabbits. Ann N Y Acad Sci. 1990;608:212–238. doi: 10.1111/j.1749-6632.1990.tb48898.x. [DOI] [PubMed] [Google Scholar]
- Solomon P. R., Pendlebury W. W. A model systems approach to age-related memory disorders. Neurotoxicology. 1988 Fall;9(3):443–461. [PubMed] [Google Scholar]
- Solomon P. R., Solomon S. D., Schaaf E. V., Perry H. E. Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure. Science. 1983 Apr 15;220(4594):329–331. doi: 10.1126/science.6836277. [DOI] [PubMed] [Google Scholar]
- Solomon P. R., Vander Schaaf E. R., Thompson R. F., Weisz D. J. Hippocampus and trace conditioning of the rabbit's classically conditioned nictitating membrane response. Behav Neurosci. 1986 Oct;100(5):729–744. doi: 10.1037//0735-7044.100.5.729. [DOI] [PubMed] [Google Scholar]
- Stanton M. E., Freeman J. H., Jr, Skelton R. W. Eyeblink conditioning in the developing rat. Behav Neurosci. 1992 Aug;106(4):657–665. doi: 10.1037//0735-7044.106.4.657. [DOI] [PubMed] [Google Scholar]
- Thompson R. F. The neural basis of basic associative learning of discrete behavioral responses. Trends Neurosci. 1988 Apr;11(4):152–155. doi: 10.1016/0166-2236(88)90141-5. [DOI] [PubMed] [Google Scholar]
- Thompson R. F. The neurobiology of learning and memory. Science. 1986 Aug 29;233(4767):941–947. doi: 10.1126/science.3738519. [DOI] [PubMed] [Google Scholar]
- Weiss C., Thompson R. F. The effects of age on eyeblink conditioning in the freely moving Fischer-344 rat. Neurobiol Aging. 1991 May-Jun;12(3):249–254. doi: 10.1016/0197-4580(91)90105-s. [DOI] [PubMed] [Google Scholar]
- Wigal T., Amsel A. Behavioral and neuroanatomical effects of prenatal, postnatal, or combined exposure to ethanol in weanling rats. Behav Neurosci. 1990 Feb;104(1):116–126. doi: 10.1037//0735-7044.104.1.116. [DOI] [PubMed] [Google Scholar]
- Yeo C. H., Hardiman M. J., Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res. 1985;60(1):87–98. doi: 10.1007/BF00237022. [DOI] [PubMed] [Google Scholar]
- Yokel R. A. Aluminum produces age related behavioral toxicity in the rabbit. Neurotoxicol Teratol. 1989 May-Jun;11(3):237–242. doi: 10.1016/0892-0362(89)90065-2. [DOI] [PubMed] [Google Scholar]




