Abstract
Plants are more susceptible to the toxic effects of nitrogen dioxide when exposure takes place in the dark. Beta-carotene and other common carotenoids react with nitrogen dioxide in the dark to yield intermediate nitrosating agents consistent with the formation of nitrate esters. Simultaneous exposure of carotenoids to NO2 and light significantly reduced formation of nitrosating intermediates and resulted in the release of nitric oxide (NO) into the gas phase. Light-mediated reduction of NO2 to NO by carotenoids may be an important mechanism for preventing damage in plants exposed to NO2. The formation of nitrosating agents from the reaction of carotenoids with NO2 suggests that their ability to prevent nirosative damage associated with NO2 exposure in both plants and animals may be limited in the absence of light.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arroyo P. L., Hatch-Pigott V., Mower H. F., Cooney R. V. Mutagenicity of nitric oxide and its inhibition by antioxidants. Mutat Res. 1992 Mar;281(3):193–202. doi: 10.1016/0165-7992(92)90008-6. [DOI] [PubMed] [Google Scholar]
- Bittrich H., Mátzig A. K., Kráker I., Appel K. E. NO2-induced DNA single strand breaks are inhibited by antioxidative vitamins in V79 cells. Chem Biol Interact. 1993 Mar;86(3):199–211. doi: 10.1016/0009-2797(93)90098-j. [DOI] [PubMed] [Google Scholar]
- Bors W., Michel C., Dalke C., Stettmaier K., Saran M., Andrae U. Radical intermediates during the oxidation of nitropropanes. The formation of NO2 from 2-nitropropane, its reactivity with nucleosides, and implications for the genotoxicity of 2-nitropropane. Chem Res Toxicol. 1993 May-Jun;6(3):302–309. doi: 10.1021/tx00033a008. [DOI] [PubMed] [Google Scholar]
- Cooney R. V., Franke A. A., Harwood P. J., Hatch-Pigott V., Custer L. J., Mordan L. J. Gamma-tocopherol detoxification of nitrogen dioxide: superiority to alpha-tocopherol. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1771–1775. doi: 10.1073/pnas.90.5.1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooney R. V., Ramseyer J., Ross P. D. Amine nitrosation by sodium nitroprusside. Cancer Lett. 1988 Jun 15;40(2):213–218. doi: 10.1016/0304-3835(88)90013-4. [DOI] [PubMed] [Google Scholar]
- Cutler R. G. Carotenoids and retinol: their possible importance in determining longevity of primate species. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7627–7631. doi: 10.1073/pnas.81.23.7627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Mascio P., Kaiser S., Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989 Nov 1;274(2):532–538. doi: 10.1016/0003-9861(89)90467-0. [DOI] [PubMed] [Google Scholar]
- Goretski J., Hollocher T. C. The kinetic and isotopic competence of nitric oxide as an intermediate in denitrification. J Biol Chem. 1990 Jan 15;265(2):889–895. [PubMed] [Google Scholar]
- Klepper L. A. Nitric Oxide Emissions from Soybean Leaves during in Vivo Nitrate Reductase Assays. Plant Physiol. 1987 Sep;85(1):96–99. doi: 10.1104/pp.85.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krinsky N. I. Antioxidant functions of carotenoids. Free Radic Biol Med. 1989;7(6):617–635. doi: 10.1016/0891-5849(89)90143-3. [DOI] [PubMed] [Google Scholar]
- LOWRY T., SCHUMAN L. M. Silo-filler's disease; a syndrome caused by nitrogen dioxide. J Am Med Assoc. 1956 Sep 15;162(3):153–160. doi: 10.1001/jama.1956.02970200001001. [DOI] [PubMed] [Google Scholar]
- Menkes M. S., Comstock G. W., Vuilleumier J. P., Helsing K. J., Rider A. A., Brookmeyer R. Serum beta-carotene, vitamins A and E, selenium, and the risk of lung cancer. N Engl J Med. 1986 Nov 13;315(20):1250–1254. doi: 10.1056/NEJM198611133152003. [DOI] [PubMed] [Google Scholar]
- Mirvish S. S., Babcook D. M., Deshpande A. D., Nagel D. L. Identification of cholesterol as a mouse skin lipid that reacts with nitrogen dioxide to yield a nitrosating agent, and of cholesteryl nitrite as the nitrosating agent produced in a chemical system from cholesterol. Cancer Lett. 1986 Apr;31(1):97–104. doi: 10.1016/0304-3835(86)90171-0. [DOI] [PubMed] [Google Scholar]
- Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
- Nguyen T., Brunson D., Crespi C. L., Penman B. W., Wishnok J. S., Tannenbaum S. R. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3030–3034. doi: 10.1073/pnas.89.7.3030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Packer L. Protective role of vitamin E in biological systems. Am J Clin Nutr. 1991 Apr;53(4 Suppl):1050S–1055S. doi: 10.1093/ajcn/53.4.1050S. [DOI] [PubMed] [Google Scholar]
- Pryor W. A., Lightsey J. W. Mechanisms of nitrogen dioxide reactions: initiation of lipid peroxidation and the production of nitrous Acid. Science. 1981 Oct 23;214(4519):435–437. doi: 10.1126/science.214.4519.435. [DOI] [PubMed] [Google Scholar]
- Wink D. A., Hanbauer I., Krishna M. C., DeGraff W., Gamson J., Mitchell J. B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9813–9817. doi: 10.1073/pnas.90.21.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wink D. A., Kasprzak K. S., Maragos C. M., Elespuru R. K., Misra M., Dunams T. M., Cebula T. A., Koch W. H., Andrews A. W., Allen J. S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991 Nov 15;254(5034):1001–1003. doi: 10.1126/science.1948068. [DOI] [PubMed] [Google Scholar]