Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1994 Feb;102(2):172–177. doi: 10.1289/ehp.94102172

In vivo X-ray fluorescence of lead in bone: review and current issues.

A C Todd 1, D R Chettle 1
PMCID: PMC1567203  PMID: 8033846

Abstract

Bone lead measurements can assess long-term lead dosimetry because the residence time of lead in bone is long. Bone lead measurements thus complement blood and plasma lead measurements, which reflect more short-term exposure. Although the noninvasive, in vivo measurement of lead in bone by X-ray fluorescence (XRF) has been under development since the 1970s, its use is still largely confined to research institutions. There are three principal methods used that vary both in the how lead X-rays are fluoresced and in which lead X-rays are fluoresced. Several groups have reported the independent development of in vivo measurement systems, the majority adopting the 109Cd K XRF method because of its advantages: a robust measurement, a lower detection limit (compared to 57Co K XRF), and a lower effective (radiation) dose (compared to L XRF) when calculated according to the most recent guidelines. These advantages, and the subsequent widespread adoption of the 109Cd method, are primarily consequences of the physics principles of the technique. This paper presents an explanation of the principles of XRF, a description of the practical measurement systems, a review of the human bone lead studies performed to date; and a discussion of some issues surrounding future application of the methods.

Full text

PDF
172

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlgren L., Lidén K., Mattsson S., Tejning S. X-ray fluorescence analysis of lead in human skeleton in vivo. Scand J Work Environ Health. 1976 Jun;2(2):82–86. doi: 10.5271/sjweh.2815. [DOI] [PubMed] [Google Scholar]
  2. Ahlgren L., Mattsson S. An X-ray fluorescence technique for in vivo determination of lead concentration in a bone matrix. Phys Med Biol. 1979 Jan;24(1):136–145. doi: 10.1088/0031-9155/24/1/011. [DOI] [PubMed] [Google Scholar]
  3. Armstrong R., Chettle D. R., Scott M. C., Somervaille L. J., Pendlington M. Repeated measurements of tibia lead concentrations by in vivo x ray fluorescence in occupational exposure. Br J Ind Med. 1992 Jan;49(1):14–16. doi: 10.1136/oem.49.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Batuman V., Wedeen R. P., Bogden J. D., Balestra D. J., Jones K., Schidlovsky G. Reducing bone lead content by chelation treatment in chronic lead poisoning: an in vivo X-ray fluorescence and bone biopsy study. Environ Res. 1989 Feb;48(1):70–75. doi: 10.1016/s0013-9351(89)80086-6. [DOI] [PubMed] [Google Scholar]
  5. Bloch P., Garavaglia G., Mitchell G., Shapiro I. M. Measurement of lead content of children's teeth in situ by x-ray fluorescence. Phys Med Biol. 1977 Jan;22(1):56–63. doi: 10.1088/0031-9155/22/1/007. [DOI] [PubMed] [Google Scholar]
  6. Chettle D. R., Scott M. C., Somervaille L. J. Improvements in the precision of in vivo bone lead measurements. Phys Med Biol. 1989 Sep;34(9):1295–1300. doi: 10.1088/0031-9155/34/9/014. [DOI] [PubMed] [Google Scholar]
  7. Chettle D. R., Scott M. C., Somervaille L. J. Lead in bone: sampling and quantitation using K X-rays excited by 109Cd. Environ Health Perspect. 1991 Feb;91:49–55. doi: 10.1289/ehp.919149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christoffersson J. O., Ahlgren L., Schütz A., Skerfving S., Mattsson S. Decrease of skeletal lead levels in man after end of occupational exposure. Arch Environ Health. 1986 Sep-Oct;41(5):312–318. doi: 10.1080/00039896.1986.9936703. [DOI] [PubMed] [Google Scholar]
  9. Christoffersson J. O., Schütz A., Ahlgren L., Haeger-Aronsen B., Mattsson S., Skerfving S. Lead in finger-bone analysed in vivo in active and retired lead workers. Am J Ind Med. 1984;6(6):447–457. doi: 10.1002/ajim.4700060608. [DOI] [PubMed] [Google Scholar]
  10. Erkkilä J., Armstrong R., Riihimäki V., Chettle D. R., Paakkari A., Scott M., Somervaille L., Starck J., Kock B., Aitio A. In vivo measurements of lead in bone at four anatomical sites: long term occupational and consequent endogenous exposure. Br J Ind Med. 1992 Sep;49(9):631–644. doi: 10.1136/oem.49.9.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerhardsson L., Attewell R., Chettle D. R., Englyst V., Lundström N. G., Nordberg G. F., Nyhlin H., Scott M. C., Todd A. C. In vivo measurements of lead in bone in long-term exposed lead smelter workers. Arch Environ Health. 1993 May-Jun;48(3):147–156. doi: 10.1080/00039896.1993.9940813. [DOI] [PubMed] [Google Scholar]
  12. Gerhardsson L., Chettle D. R., Englyst V., Nordberg G. F., Nyhlin H., Scott M. C., Todd A. C., Vesterberg O. Kidney effects in long term exposed lead smelter workers. Br J Ind Med. 1992 Mar;49(3):186–192. doi: 10.1136/oem.49.3.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gordon C. L., Chettle D. R., Webber C. E. An improved instrument for the in vivo detection of lead in bone. Br J Ind Med. 1993 Jul;50(7):637–641. doi: 10.1136/oem.50.7.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon C. L., Chettle D. R., Webber C. E. An upgraded 109Cd K X-ray fluorescence bone Pb measurement. Basic Life Sci. 1993;60:285–288. doi: 10.1007/978-1-4899-1268-8_63. [DOI] [PubMed] [Google Scholar]
  15. Green S., Bradley D. A., Palethorpe J. E., Mearman D., Chettle D. R., Lewis A. D., Mountford P. J., Morgan W. D. An enhanced sensitivity K-shell x-ray fluorescence technique for tibial lead determination. Phys Med Biol. 1993 Mar;38(3):389–396. doi: 10.1088/0031-9155/38/3/006. [DOI] [PubMed] [Google Scholar]
  16. Greenberg A., Parkinson D. K., Fetterolf D. E., Puschett J. B., Ellis K. J., Wielopolski L., Vaswani A. N., Cohn S. H., Landrigan P. J. Effects of elevated lead and cadmium burdens on renal function and calcium metabolism. Arch Environ Health. 1986 Mar-Apr;41(2):69–76. doi: 10.1080/00039896.1986.9937412. [DOI] [PubMed] [Google Scholar]
  17. Hu H., Milder F. L., Burger D. E. The use of K X-ray fluorescence for measuring lead burden in epidemiological studies: high and low lead burdens and measurement uncertainty. Environ Health Perspect. 1991 Aug;94:107–110. doi: 10.1289/ehp.94-1567946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hu H., Milder F. L., Burger D. E. X-ray fluorescence measurements of lead burden in subjects with low-level community lead exposure. Arch Environ Health. 1990 Nov-Dec;45(6):335–341. doi: 10.1080/00039896.1990.10118752. [DOI] [PubMed] [Google Scholar]
  19. Hu H., Pepper L., Goldman R. Effect of repeated occupational exposure to lead, cessation of exposure, and chelation on levels of lead in bone. Am J Ind Med. 1991;20(6):723–735. doi: 10.1002/ajim.4700200603. [DOI] [PubMed] [Google Scholar]
  20. Kalef-Ezra J. A., Slatkin D. N., Rosen J. F., Wielopolski L. Radiation risk to the human conceptus from measurement of maternal tibial bone lead by L-line x-ray fluorescence. Health Phys. 1990 Feb;58(2):217–218. [PubMed] [Google Scholar]
  21. Kosnett M. J., Becker C. E., Osterloh J. D., Kelly T. J., Pasta D. J. Factors influencing bone lead concentration in a suburban community assessed by noninvasive K x-ray fluorescence. JAMA. 1994 Jan 19;271(3):197–203. [PubMed] [Google Scholar]
  22. Lindh U., Brune D., Nordberg G. Microprobe analysis of lead in human femur by proton induced X-ray emission (PIXE). Sci Total Environ. 1978 Jul;10(1):31–37. doi: 10.1016/0048-9697(78)90047-5. [DOI] [PubMed] [Google Scholar]
  23. Mason H. J., Somervaille L. J., Wright A. L., Chettle D. R., Scott M. C. Effect of occupational lead exposure on serum 1,25-dihydroxyvitamin D levels. Hum Exp Toxicol. 1990 Jan;9(1):29–34. doi: 10.1177/096032719000900107. [DOI] [PubMed] [Google Scholar]
  24. McNeill F. E., Todd A. C., Fowler B. A., Laughlin N. K. The in vivo measurement of bone lead stores by 109Cd K X-ray fluorescence in a non-human primate (Macaca mulatta). Basic Life Sci. 1993;60:315–318. doi: 10.1007/978-1-4899-1268-8_70. [DOI] [PubMed] [Google Scholar]
  25. Nilsson U., Attewell R., Christoffersson J. O., Schütz A., Ahlgren L., Skerfving S., Mattsson S. Kinetics of lead in bone and blood after end of occupational exposure. Pharmacol Toxicol. 1991 Jun;68(6):477–484. doi: 10.1111/j.1600-0773.1991.tb01273.x. [DOI] [PubMed] [Google Scholar]
  26. Price J., Baddeley H., Kenardy J. A., Thomas B. J., Thomas B. W. In vivo X-ray fluorescence estimation of bone lead concentrations in Queensland adults. Br J Radiol. 1984 Jan;57(673):29–33. doi: 10.1259/0007-1285-57-673-29. [DOI] [PubMed] [Google Scholar]
  27. Rabinowitz M. B., Wetherill G. W., Kopple J. D. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976 Aug;58(2):260–270. doi: 10.1172/JCI108467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rosen J. F., Markowitz M. E., Bijur P. E., Jenks S. T., Wielopolski L., Kalef-Ezra J. A., Slatkin D. N. L-line x-ray fluorescence of cortical bone lead compared with the CaNa2EDTA test in lead-toxic children: public health implications. Proc Natl Acad Sci U S A. 1989 Jan;86(2):685–689. doi: 10.1073/pnas.86.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosen J. F., Markowitz M. E., Bijur P. E., Jenks S. T., Wielopolski L., Kalef-Ezra J. A., Slatkin D. N. Sequential measurements of bone lead content by L X-ray fluorescence in CaNa2EDTA-treated lead-toxic children. Environ Health Perspect. 1991 Feb;91:57–62. doi: 10.1289/ehp.919157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rosen J. F., Markowitz M. E., Bijur P. E., Jenks S. T., Wielopolski L., Kalef-Ezra J. A., Slatkin D. N. Sequential measurements of bone lead content by L X-ray fluorescence in CaNa2EDTA-treated lead-toxic children. Environ Health Perspect. 1991 Jun;93:271–277. doi: 10.1289/ehp.9193271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schütz A., Skerfving S., Christoffersson J. O., Tell I. Chelatable lead versus lead in human trabecular and compact bone. Sci Total Environ. 1987 Mar;61:201–209. doi: 10.1016/0048-9697(87)90367-6. [DOI] [PubMed] [Google Scholar]
  32. Scott M. C., Chettle D. R. In vivo elemental analysis in occupational medicine. Scand J Work Environ Health. 1986 Apr;12(2):81–96. doi: 10.5271/sjweh.2162. [DOI] [PubMed] [Google Scholar]
  33. Silbergeld E. K. Lead in bone: implications for toxicology during pregnancy and lactation. Environ Health Perspect. 1991 Feb;91:63–70. doi: 10.1289/ehp.919163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Silbergeld E. K., Sauk J., Somerman M., Todd A., McNeill F., Fowler B., Fontaine A., van Buren J. Lead in bone: storage site, exposure source, and target organ. Neurotoxicology. 1993 Summer-Fall;14(2-3):225–236. [PubMed] [Google Scholar]
  35. Silbergeld E. K., Schwartz J., Mahaffey K. Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environ Res. 1988 Oct;47(1):79–94. doi: 10.1016/s0013-9351(88)80023-9. [DOI] [PubMed] [Google Scholar]
  36. Sokas R. K., Besarab A., McDiarmid M. A., Shapiro I. M., Bloch P. Sensitivity of in vivo X-ray fluorescence determination of skeletal lead stores. Arch Environ Health. 1990 Sep-Oct;45(5):268–272. doi: 10.1080/00039896.1990.10118744. [DOI] [PubMed] [Google Scholar]
  37. Somervaille L. J., Chettle D. R., Scott M. C., Aufderheide A. C., Wallgren J. E., Wittmers L. E., Jr, Rapp G. R., Jr Comparison of two in vitro methods of bone lead analysis and the implications for in vivo measurements. Phys Med Biol. 1986 Nov;31(11):1267–1274. doi: 10.1088/0031-9155/31/11/008. [DOI] [PubMed] [Google Scholar]
  38. Somervaille L. J., Chettle D. R., Scott M. C. In vivo measurement of lead in bone using x-ray fluorescence. Phys Med Biol. 1985 Sep;30(9):929–943. doi: 10.1088/0031-9155/30/9/005. [DOI] [PubMed] [Google Scholar]
  39. Somervaille L. J., Chettle D. R., Scott M. C., Tennant D. R., McKiernan M. J., Skilbeck A., Trethowan W. N. In vivo tibia lead measurements as an index of cumulative exposure in occupationally exposed subjects. Br J Ind Med. 1988 Mar;45(3):174–181. doi: 10.1136/oem.45.3.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Somervaille L. J., Nilsson U., Chettle D. R., Tell I., Scott M. C., Schütz A., Mattsson S., Skerfving S. In vivo measurements of bone lead--a comparison of two x-ray fluorescence techniques used at three different bone sites. Phys Med Biol. 1989 Dec;34(12):1833–1845. doi: 10.1088/0031-9155/34/12/007. [DOI] [PubMed] [Google Scholar]
  41. Tell I., Somervaille L. J., Nilsson U., Bensryd I., Schütz A., Chettle D. R., Scott M. C., Skerfving S. Chelated lead and bone lead. Scand J Work Environ Health. 1992 Apr;18(2):113–119. doi: 10.5271/sjweh.1603. [DOI] [PubMed] [Google Scholar]
  42. Thomas B. J. Equipment design issues for the in vivo X-ray fluorescence analysis of bone lead. Environ Health Perspect. 1991 Feb;91:39–43. doi: 10.1289/ehp.919139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Todd A. C., Chettle D. R., Scott M. C., Somervaille L. J. Monte Carlo modelling of in vivo x-ray fluorescence of lead in the kidney. Phys Med Biol. 1991 Apr;36(4):439–448. doi: 10.1088/0031-9155/36/4/003. [DOI] [PubMed] [Google Scholar]
  44. Todd A. C., Landrigan P. J., Bloch P. Workshop on the X-ray fluorescence of lead in bone: conclusions, recommendations and summary. Neurotoxicology. 1993 Spring;14(1):145–154. [PubMed] [Google Scholar]
  45. Todd A. C., Landrigan P. J. X-ray fluorescence analysis of lead in bone. Environ Health Perspect. 1993 Nov;101(6):494–495. doi: 10.1289/ehp.93101494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Todd A. C., McNeill F. E., Fowler B. A. In vivo X-ray fluorescence of lead in bone. Environ Res. 1992 Dec;59(2):326–335. doi: 10.1016/s0013-9351(05)80039-8. [DOI] [PubMed] [Google Scholar]
  47. Todd A. C., McNeill F. E., Palethorpe J. E., Peach D. E., Chettle D. R., Tobin M. J., Strosko S. J., Rosen J. C. In vivo X-ray fluorescence of lead in bone using K X-ray excitation with 109Cd sources: radiation dosimetry studies. Environ Res. 1992 Apr;57(2):117–132. doi: 10.1016/s0013-9351(05)80073-8. [DOI] [PubMed] [Google Scholar]
  48. Wielopolski L., Ellis K. J., Vaswani A. N., Cohn S. H., Greenberg A., Puschett J. B., Parkinson D. K., Fetterolf D. E., Landrigan P. J. In vivo bone lead measurements: a rapid monitoring method for cumulative lead exposure. Am J Ind Med. 1986;9(3):221–226. doi: 10.1002/ajim.4700090304. [DOI] [PubMed] [Google Scholar]
  49. Wielopolski L., Rosen J. F., Slatkin D. N., Vartsky D., Ellis K. J., Cohn S. H. Feasibility of noninvasive analysis of lead in the human tibia by soft x-ray fluorescence. Med Phys. 1983 Mar-Apr;10(2):248–251. doi: 10.1118/1.595244. [DOI] [PubMed] [Google Scholar]
  50. Wielopolski L., Rosen J. F., Slatkin D. N., Zhang R., Kalef-Ezra J. A., Rothman J. C., Maryanski M., Jenks S. T. In vivo measurement of cortical bone lead using polarized x rays. Med Phys. 1989 Jul-Aug;16(4):521–528. doi: 10.1118/1.596353. [DOI] [PubMed] [Google Scholar]
  51. Wittmers L. E., Jr, Aufderheide A. C., Wallgren J., Rapp G., Jr, Alich A. Lead in bone. IV. Distribution of lead in the human skeleton. Arch Environ Health. 1988 Nov-Dec;43(6):381–391. doi: 10.1080/00039896.1988.9935855. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES