Abstract
The distribution of inhaled mineral fibers in the lung determines the site and severity of disease caused by the fibers. Some of our recent work has described the fate of inhaled asbestos fibers in rodents. After a brief inhalation exposure, asbestos fibers are deposited primarily at the first alveolar duct bifurcations, and fibrotic lesions are initiated. These sites of deposition occur as close to the visceral pleura as 220 micron. Several studies have suggested that short fibers are cleared from the lung more efficiently than long ones, and our data support this view. Our laboratory has shown that aerosolized chrysotile fibers longer than 16 microns can be deposited in the peripheral lung parenchyma of rats, and the measured clearance rate of these fibers is not significantly different from zero. Chrysotile, but no amphibole, fibers split longitudinally, so that the number of retained chrysotile fibers > or = 16 microns in length increases over time. We have not observed significant changes in chemical composition of chrysotile fibers up to 30 days post-deposition in the rat. Nor have we observed translocation of chrysotile fibers from the "central" regions of the lung toward the subpleural regions. However, 1 month after a single 3-hr exposure to chrysotile asbestos, the longest, most pathogenic fibers persist throughout the lung parenchyma. These retained fibers have the potential to cause disease in both parenchyma and pleura.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamson I. Y., Bowden D. H. Response of mouse lung to crocidolite asbestos. 1. Minimal fibrotic reaction to short fibres. J Pathol. 1987 Jun;152(2):99–107. doi: 10.1002/path.1711520206. [DOI] [PubMed] [Google Scholar]
- Adamson I. Y., Bowden D. H. Response of mouse lung to crocidolite asbestos. 2. Pulmonary fibrosis after long fibres. J Pathol. 1987 Jun;152(2):109–117. doi: 10.1002/path.1711520207. [DOI] [PubMed] [Google Scholar]
- Bauman M. D., Jetten A. M., Bonner J. C., Kumar R. K., Bennett R. A., Brody A. R. Secretion of a platelet-derived growth factor homologue by rat alveolar macrophages exposed to particulates in vitro. Eur J Cell Biol. 1990 Apr;51(2):327–334. [PubMed] [Google Scholar]
- Bellmann B., Muhle H., Pott F., König H., Klöppel H., Spurny K. Persistence of man-made mineral fibres (MMMF) and asbestos in rat lungs. Ann Occup Hyg. 1987;31(4B):693–709. doi: 10.1093/annhyg/31.4b.693. [DOI] [PubMed] [Google Scholar]
- Bolton R. E., Vincent J. H., Jones A. D., Addison J., Beckett S. T. An overload hypothesis for pulmonary clearance of UICC amosite fibres inhaled by rats. Br J Ind Med. 1983 Aug;40(3):264–272. doi: 10.1136/oem.40.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody A. R., Hill L. H., Adkins B., Jr, O'Connor R. W. Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis. 1981 Jun;123(6):670–679. doi: 10.1164/arrd.1981.123.6.670. [DOI] [PubMed] [Google Scholar]
- Chang L. Y., Overby L. H., Brody A. R., Crapo J. D. Progressive lung cell reactions and extracellular matrix production after a brief exposure to asbestos. Am J Pathol. 1988 Apr;131(1):156–170. [PMC free article] [PubMed] [Google Scholar]
- Churg A., Wright J. L., Gilks B., DePaoli L. Rapid short-term clearance of chrysotile compared with amosite asbestos in the guinea pig. Am Rev Respir Dis. 1989 Apr;139(4):885–890. doi: 10.1164/ajrccm/139.4.885. [DOI] [PubMed] [Google Scholar]
- Coin P. G., Roggli V. L., Brody A. R. Deposition, clearance, and translocation of chrysotile asbestos from peripheral and central regions of the rat lung. Environ Res. 1992 Jun;58(1):97–116. doi: 10.1016/s0013-9351(05)80207-5. [DOI] [PubMed] [Google Scholar]
- Davis J. M., Addison J., Bolton R. E., Donaldson K., Jones A. D., Smith T. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol. 1986 Jun;67(3):415–430. [PMC free article] [PubMed] [Google Scholar]
- Davis J. M., Jones A. D. Comparisons of the pathogenicity of long and short fibres of chrysotile asbestos in rats. Br J Exp Pathol. 1988 Oct;69(5):717–737. [PMC free article] [PubMed] [Google Scholar]
- Dodson R. F., Ford J. O. Early response of the visceral pleura following asbestos exposure: an ultrastructural study. J Toxicol Environ Health. 1985;15(5):673–686. doi: 10.1080/15287398509530695. [DOI] [PubMed] [Google Scholar]
- Hillerdal G. The pathogenesis of pleural plaques and pulmonary asbestosis: possibilities and impossibilities. Eur J Respir Dis. 1980 Jun;61(3):129–138. [PubMed] [Google Scholar]
- Jaurand M. C., Fleury J., Monchaux G., Nebut M., Bignon J. Pleural carcinogenic potency of mineral fibers (asbestos, attapulgite) and their cytotoxicity on cultured cells. J Natl Cancer Inst. 1987 Oct;79(4):797–804. [PubMed] [Google Scholar]
- Jaurand M. C., Gaudichet A., Halpern S., Bignon J. In vitro biodegradation of chrysotile fibres by alveolar macrophages and mesothelial cells in culture: comparison with a pH effect. Br J Ind Med. 1984 Aug;41(3):389–395. doi: 10.1136/oem.41.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimizuka G., Wang N. S., Hayashi Y. Physical and microchemical alterations of chrysotile and amosite asbestos in the hamster lung. J Toxicol Environ Health. 1987;21(3):251–264. doi: 10.1080/15287398709531017. [DOI] [PubMed] [Google Scholar]
- Lapin C. A., Craig D. K., Valerio M. G., McCandless J. B., Bogoroch R. A subchronic inhalation toxicity study in rats exposed to silicon carbide whiskers. Fundam Appl Toxicol. 1991 Jan;16(1):128–146. doi: 10.1016/0272-0590(91)90142-q. [DOI] [PubMed] [Google Scholar]
- McGavran P. D., Moore L. B., Brody A. R. Inhalation of chrysotile asbestos induces rapid cellular proliferation in small pulmonary vessels of mice and rats. Am J Pathol. 1990 Mar;136(3):695–705. [PMC free article] [PubMed] [Google Scholar]
- Morgan A., Holmes A., Davison W. Clearance of sized glass fibres from the rat lung and their solubility in vivo. Ann Occup Hyg. 1982;25(3):317–331. doi: 10.1093/annhyg/25.3.317. [DOI] [PubMed] [Google Scholar]
- Roggli V. L., Brody A. R. Changes in numbers and dimensions of chrysotile asbestos fibers in lungs of rats following short-term exposure. Exp Lung Res. 1984;7(2):133–147. doi: 10.3109/01902148409069674. [DOI] [PubMed] [Google Scholar]
- Roggli V. L., George M. H., Brody A. R. Clearance and dimensional changes of crocidolite asbestos fibers isolated from lungs of rats following short-term exposure. Environ Res. 1987 Feb;42(1):94–105. doi: 10.1016/s0013-9351(87)80010-5. [DOI] [PubMed] [Google Scholar]
- Stanton M. F., Layard M., Tegeris A., Miller E., May M., Morgan E., Smith A. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981 Nov;67(5):965–975. [PubMed] [Google Scholar]
