Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1994 Oct;102(Suppl 5):55–59. doi: 10.1289/ehp.94102s555

In vitro assessment of biopersistence using mammalian cell systems.

M C Jaurand 1
PMCID: PMC1567263  PMID: 7882956

Abstract

Biopersistence of fibers in the respiratory airways is a concept including both the physical durability of the fibers and their chemical stability. Physical durability results from several events of diverse origins: fiber epuration by the lung clearance mechanisms, internalization by scavenger cells and fiber splitting. Fibers residing in the lung milieu will be attacked and modified chemically, structurally, and physically (size and shape). Fiber toxicity, which is very likely to be dependent on physical fiber characteristics, will also be dependent on the duration of the fiber's stay in the tissue. Biopersistence, therefore, will be a key issue in determining fiber toxicity. So far, few in vitro systems have been used to study parameters involved in biopersistence. However, examples exist of investigations of fiber phagocytosis by mammalian cells in culture, either by macrophages, or epithelial or mesothelial cells, and studies have also been reported of the fate of internalized fibers in relation to fiber dimensions and chemical stability, especially within macrophages and mesothelial cells. The methods will be presented and discussed to determine to what extent the development of in vitro biophysical models could help in determining those parameters, known or thought to be relevant to fiber persistence.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. André S., Métivier H., Lantenois G., Boyer M., Nolibé D., Masse R. Beryllium metal solubility in the lung, comparison of metal and hot-pressed forms by in vivo and in vitro dissolution bioassays. Hum Toxicol. 1987 May;6(3):233–240. doi: 10.1177/096032718700600311. [DOI] [PubMed] [Google Scholar]
  2. Bellmann B., Muhle H., Pott F., König H., Klöppel H., Spurny K. Persistence of man-made mineral fibres (MMMF) and asbestos in rat lungs. Ann Occup Hyg. 1987;31(4B):693–709. doi: 10.1093/annhyg/31.4b.693. [DOI] [PubMed] [Google Scholar]
  3. Brown R. C., Carthew P., Hoskins J. A., Sara E., Simpson C. F. Surface modification can affect the carcinogenicity of asbestos. Carcinogenesis. 1990 Oct;11(10):1883–1885. doi: 10.1093/carcin/11.10.1883. [DOI] [PubMed] [Google Scholar]
  4. Cole R. W., Ault J. G., Hayden J. H., Rieder C. L. Crocidolite asbestos fibers undergo size-dependent microtubule-mediated transport after endocytosis in vertebrate lung epithelial cells. Cancer Res. 1991 Sep 15;51(18):4942–4947. [PubMed] [Google Scholar]
  5. Cook P. M., Palekar L. D., Coffin D. L. Interpretation of the carcinogenicity of amosite asbestos and ferroactinolite on the basis of retained fiber dose and characteristics in vivo. Toxicol Lett. 1982 Oct;13(3-4):151–158. doi: 10.1016/0378-4274(82)90203-x. [DOI] [PubMed] [Google Scholar]
  6. Davis J. M. A review of experimental evidence for the carcinogenicity of man-made vitreous fibers. Scand J Work Environ Health. 1986;12 (Suppl 1):12–17. [PubMed] [Google Scholar]
  7. Davis J. M., Bolton R. E., Douglas A. N., Jones A. D., Smith T. Effects of electrostatic charge on the pathogenicity of chrysotile asbestos. Br J Ind Med. 1988 May;45(5):292–299. doi: 10.1136/oem.45.5.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Desai R., Richards R. J. The adsorption of biological macromolecules by mineral dusts. Environ Res. 1978 Jul;16(1-3):449–464. doi: 10.1016/0013-9351(78)90178-0. [DOI] [PubMed] [Google Scholar]
  9. Dodson R. F., Williams M. G., Jr, Hurst G. A. Early response of free airway cells to "amosite": a correlated study using electron microscopy and energy dispersive X-ray analysis. Lung. 1980;157(3):143–154. doi: 10.1007/BF02713611. [DOI] [PubMed] [Google Scholar]
  10. Geisow M. J., D'Arcy Hart P., Young M. R. Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J Cell Biol. 1981 Jun;89(3):645–652. doi: 10.1083/jcb.89.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goodglick L. A., Kane A. B. Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Res. 1986 Nov;46(11):5558–5566. [PubMed] [Google Scholar]
  12. Hansen K., Mossman B. T. Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res. 1987 Mar 15;47(6):1681–1686. [PubMed] [Google Scholar]
  13. Harington J. S. The biological effects of mineral fibres, especially asbestos, as seen from in vitro and in vivo studies. Ann Anat Pathol (Paris) 1976 Mar-Apr;21(2):155–198. [PubMed] [Google Scholar]
  14. Haugen A., Schafer P. W., Lechner J. F., Stoner G. D., Trump B. F., Harris C. C. Cellular ingestion, toxic effects, and lesions observed in human bronchial epithelial tissue and cells cultured with asbestos and glass fibers. Int J Cancer. 1982 Sep 15;30(3):265–272. doi: 10.1002/ijc.2910300303. [DOI] [PubMed] [Google Scholar]
  15. Hesterberg T. W., Butterick C. J., Oshimura M., Brody A. R., Barrett J. C. Role of phagocytosis in Syrian hamster cell transformation and cytogenetic effects induced by asbestos and short and long glass fibers. Cancer Res. 1986 Nov;46(11):5795–5802. [PubMed] [Google Scholar]
  16. Holmes A., Morgan A. Leahing of constituents of chrysotile asbestos in vivo. Nature. 1967 Jul 22;215(5099):441–442. doi: 10.1038/215441b0. [DOI] [PubMed] [Google Scholar]
  17. Jaurand M. C., Bignon J., Sebastien P., Goni J. Leaching of chrysotile asbestos in human lungs. Correlation with in vitro studies using rabbit alveolar macrophages. Environ Res. 1977 Oct;14(2):245–254. doi: 10.1016/0013-9351(77)90036-6. [DOI] [PubMed] [Google Scholar]
  18. Jaurand M. C., Fleury J., Monchaux G., Nebut M., Bignon J. Pleural carcinogenic potency of mineral fibers (asbestos, attapulgite) and their cytotoxicity on cultured cells. J Natl Cancer Inst. 1987 Oct;79(4):797–804. [PubMed] [Google Scholar]
  19. Jaurand M. C., Gaudichet A., Halpern S., Bignon J. In vitro biodegradation of chrysotile fibres by alveolar macrophages and mesothelial cells in culture: comparison with a pH effect. Br J Ind Med. 1984 Aug;41(3):389–395. doi: 10.1136/oem.41.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jaurand M. C., Kaplan H., Thiollet J., Pinchon M. C., Bernaudin J. F., Bignon J. Phagocytosis of chrysotile fibers by pleural mesothelial cells in culture. Am J Pathol. 1979 Mar;94(3):529–538. [PMC free article] [PubMed] [Google Scholar]
  21. Johnson N. F., Davies R. Effect of asbestos on the P388D1 macrophagelike cell line: preliminary ultrastructural observations. Environ Health Perspect. 1983 Sep;51:109–117. doi: 10.1289/ehp.8351109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones B. M., Edwards J. H., Wagner J. C. Absorption of serum proteins by inorganic dusts. Br J Ind Med. 1972 Jul;29(3):287–292. doi: 10.1136/oem.29.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Joseph L. B., Stephens R. E., Ottolenghi A. C., Lipetz P. D., Newman H. A. Morphological transformation in vitro of normal human fibroblasts by chrysotile. Environ Health Perspect. 1983 Sep;51:17–22. doi: 10.1289/ehp.835117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kreyling W. G., Godleski J. J., Kariya S. T., Rose R. M., Brain J. D. In vitro dissolution of uniform cobalt oxide particles by human and canine alveolar macrophages. Am J Respir Cell Mol Biol. 1990 May;2(5):413–422. doi: 10.1165/ajrcmb/2.5.413. [DOI] [PubMed] [Google Scholar]
  25. Langer A. M., Rubin I. B., Selikoff I. J., Pooley F. D. Chemical characterization of uncoated asbestos fibers from the lungs of asbestos workers by electron microprobe analysis. J Histochem Cytochem. 1972 Sep;20(9):735–740. doi: 10.1177/20.9.735. [DOI] [PubMed] [Google Scholar]
  26. Le Bouffant L., Daniel H., Henin J. P., Martin J. C., Normand C., Tichoux G., Trolard F. Experimental study on long-term effects of inhaled MMMF on the lungs of rats. Ann Occup Hyg. 1987;31(4B):765–790. doi: 10.1093/annhyg/31.4b.765. [DOI] [PubMed] [Google Scholar]
  27. Lippmann M., Yeates D. B., Albert R. E. Deposition, retention, and clearance of inhaled particles. Br J Ind Med. 1980 Nov;37(4):337–362. doi: 10.1136/oem.37.4.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lund L. G., Aust A. E. Iron-catalyzed reactions may be responsible for the biochemical and biological effects of asbestos. Biofactors. 1991 Jun;3(2):83–89. [PubMed] [Google Scholar]
  29. Lundborg M., Eklund A., Lind B., Camner P. Dissolution of metals by human and rabbit alveolar macrophages. Br J Ind Med. 1985 Sep;42(9):642–645. doi: 10.1136/oem.42.9.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Luoto K., Holopainen M., Karppinen K., Perander M., Savolainen K. Dissolution of man-made vitreous fibers in rat alveolar macrophage culture and Gamble's saline solution: influence of different media and chemical composition of the fibers. Environ Health Perspect. 1994 Oct;102 (Suppl 5):103–107. doi: 10.1289/ehp.94102s5103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Macdonald J. L., Kane A. B. Identification of asbestos fibers within single cells. Lab Invest. 1986 Aug;55(2):177–185. [PubMed] [Google Scholar]
  32. Malorni W., Iosi F., Falchi M., Donelli G. On the mechanism of cell internalization of chrysotile fibers: an immunocytochemical and ultrastructural study. Environ Res. 1990 Aug;52(2):164–177. doi: 10.1016/s0013-9351(05)80251-8. [DOI] [PubMed] [Google Scholar]
  33. McLemore T., Corson M., Mace M., Arnott M., Jenkins T., Snodgrass D., Martin R., Wray N., Brinkley B. R. Phagocytosis of asbestos fibers by human pulmonary alveolar macrophages. Cancer Lett. 1979 Apr;6(4-5):183–192. doi: 10.1016/s0304-3835(79)80032-4. [DOI] [PubMed] [Google Scholar]
  34. Miller K., Handfield R. I., Kagan E. The effect of different mineral dusts on the mechanism of phagocytosis: a scanning electron microscope study. Environ Res. 1978 Feb;15(1):139–154. doi: 10.1016/0013-9351(78)90087-7. [DOI] [PubMed] [Google Scholar]
  35. Morgan A., Holmes A., Davison W. Clearance of sized glass fibres from the rat lung and their solubility in vivo. Ann Occup Hyg. 1982;25(3):317–331. doi: 10.1093/annhyg/25.3.317. [DOI] [PubMed] [Google Scholar]
  36. Mossman B. T., Kessler J. B., Ley B. W., Craighead J. E. Interaction of crocidolite asbestos with hamster respiratory mucosa in organ culture. Lab Invest. 1977 Feb;36(2):131–139. [PubMed] [Google Scholar]
  37. Nagase M., Abe Y., Chigira M., Udagawa E. Toxicity of silica-containing calcium phosphate glasses demonstrated in mice. Biomaterials. 1992;13(3):172–175. doi: 10.1016/0142-9612(92)90067-x. [DOI] [PubMed] [Google Scholar]
  38. Oehlert G. W. A reanalysis of the Stanton et al. pleural sarcoma data. Environ Res. 1991 Apr;54(2):194–205. doi: 10.1016/s0013-9351(05)80101-x. [DOI] [PubMed] [Google Scholar]
  39. Richards R. J., Hext P. M., Blundell G., Henderson W. J., Volcani B. E. Ultrastructural changes in lung fibroblast cultures exposed to chrysotile asbestos. Br J Exp Pathol. 1974 Jun;55(3):275–281. [PMC free article] [PubMed] [Google Scholar]
  40. Roggli V. L., George M. H., Brody A. R. Clearance and dimensional changes of crocidolite asbestos fibers isolated from lungs of rats following short-term exposure. Environ Res. 1987 Feb;42(1):94–105. doi: 10.1016/s0013-9351(87)80010-5. [DOI] [PubMed] [Google Scholar]
  41. Smith D. M., Ortiz L. W., Archuleta R. F., Johnson N. F. Long-term health effects in hamsters and rats exposed chronically to man-made vitreous fibres. Ann Occup Hyg. 1987;31(4B):731–754. doi: 10.1093/annhyg/31.4b.731. [DOI] [PubMed] [Google Scholar]
  42. Stanton M. F., Layard M., Tegeris A., Miller E., May M., Morgan E., Smith A. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981 Nov;67(5):965–975. [PubMed] [Google Scholar]
  43. Suzuki Y., Churg J., Ono T. Phagocytic activity of the alveolar epithelial cells in pulmonary asbestosis. Am J Pathol. 1972 Dec;69(3):373–388. [PMC free article] [PubMed] [Google Scholar]
  44. Valerio F., Balducci D., Scarabelli L. Selective adsorption of serum proteins by chrysotile and crocidolite. Environ Res. 1986 Dec;41(2):432–439. doi: 10.1016/s0013-9351(86)80137-2. [DOI] [PubMed] [Google Scholar]
  45. Van der Meeren A., Fleury J., Nebut M., Monchaux G., Janson X., Jaurand M. C. Mesothelioma in rats following intrapleural injection of chrysotile and phosphorylated chrysotile (chrysophosphate). Int J Cancer. 1992 Apr 1;50(6):937–942. doi: 10.1002/ijc.2910500620. [DOI] [PubMed] [Google Scholar]
  46. Wade M. J., Lipkin L. E., Frank A. L. Studies of in vitro asbestos-cell interaction. J Environ Pathol Toxicol. 1979 Mar-Apr;2(4):1029–1039. [PubMed] [Google Scholar]
  47. Wang N. S., Jaurand M. C., Magne L., Kheuang L., Pinchon M. C., Bignon J. The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture. A scanning and transmission electron microscopic study. Am J Pathol. 1987 Feb;126(2):343–349. [PMC free article] [PubMed] [Google Scholar]
  48. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES