Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1994 Sep;102(Suppl 3):41–44. doi: 10.1289/ehp.94102s341

Effects of chromium on DNA replication in vitro.

E T Snow 1
PMCID: PMC1567426  PMID: 7843135

Abstract

Chromium is an environmentally significant human carcinogen with complicated metabolism and an unknown mechanism of mutagenesis. Chromium(VI) is taken up by cells as the chromate anion and is reduced intracellularly via reactive intermediates to stable Cr(III) species. Chromium(III) forms tight complexes with biological ligands, such as DNA and proteins, which are slow to exchange. In vitro, CrCl3.6H2O primarily interacts with DNA to form outer shell charge complexes with the DNA phosphates. However, at micromolar concentrations, the Cr(III) binds to a low number of saturable tight binding sites on single-stranded M13 DNA. Additional chromium interacts in a nonspecific manner with the DNA and can form intermolecular DNA cross-links. Although high concentrations of Cr(III) inhibit DNA replication, micromolar concentrations of Cr(III) can substitute for Mg2+, weakly activate the Klenow fragment of E. coli DNA polymerase I (Pol I-KF), and act as an enhancer of nucleotide incorporation. Alterations in enzyme kinetics induced by Cr(III) increase DNA polymerase processivity and the rate of polymerase bypass of DNA lesions. This results in an increased rate of spontaneous mutagenesis during DNA replication both in vitro and in vivo. Our results indicate that chromium(III) may contribute to chromate-induced mutagenesis and may be a factor in the initiation of chromium carcinogenesis.

Full text

PDF
41

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar J., Berkovits H. J., Floyd R. A., Wetterhahn K. E. Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage. Environ Health Perspect. 1991 May;92:53–62. doi: 10.1289/ehp.919253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Flora S., Bagnasco M., Serra D., Zanacchi P. Genotoxicity of chromium compounds. A review. Mutat Res. 1990 Mar;238(2):99–172. doi: 10.1016/0165-1110(90)90007-x. [DOI] [PubMed] [Google Scholar]
  3. DePamphilis M. L., Cleland W. W. Preparation and properties of chromium (3)-nucleotide complexes for use in the study of enzyme mechanisms. Biochemistry. 1973 Sep 11;12(19):3714–3724. doi: 10.1021/bi00743a022. [DOI] [PubMed] [Google Scholar]
  4. Klein C. B., Frenkel K., Costa M. The role of oxidative processes in metal carcinogenesis. Chem Res Toxicol. 1991 Nov-Dec;4(6):592–604. doi: 10.1021/tx00024a001. [DOI] [PubMed] [Google Scholar]
  5. Kortenkamp A., O'Brien P., Beyersmann D. The reduction of chromate is a prerequisite of chromium binding to cell nuclei. Carcinogenesis. 1991 Jun;12(6):1143–1144. doi: 10.1093/carcin/12.6.1143. [DOI] [PubMed] [Google Scholar]
  6. Liebross R. H., Wetterhahn K. E. In vivo formation of chromium(V) in chick embryo red blood cells. Chem Res Toxicol. 1990 Sep-Oct;3(5):401–403. doi: 10.1021/tx00017a002. [DOI] [PubMed] [Google Scholar]
  7. Moriya M., Ou C., Bodepudi V., Johnson F., Takeshita M., Grollman A. P. Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res. 1991 May;254(3):281–288. doi: 10.1016/0921-8777(91)90067-y. [DOI] [PubMed] [Google Scholar]
  8. Schaaper R. M., Dunn R. L. Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6220–6224. doi: 10.1073/pnas.84.17.6220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Snow E. T. A possible role for chromium(III) in genotoxicity. Environ Health Perspect. 1991 May;92:75–81. doi: 10.1289/ehp.919275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Snow E. T. Metal carcinogenesis: mechanistic implications. Pharmacol Ther. 1992;53(1):31–65. doi: 10.1016/0163-7258(92)90043-y. [DOI] [PubMed] [Google Scholar]
  11. Snow E. T., Singh J., Koenig K. L., Solomon J. J. Propylene oxide mutagenesis at template cytosine residues. Environ Mol Mutagen. 1994;23(4):274–280. doi: 10.1002/em.2850230403. [DOI] [PubMed] [Google Scholar]
  12. Snow E. T., Xu L. S. Chromium(III) bound to DNA templates promotes increased polymerase processivity and decreased fidelity during replication in vitro. Biochemistry. 1991 Nov 26;30(47):11238–11245. doi: 10.1021/bi00111a007. [DOI] [PubMed] [Google Scholar]
  13. Snow E. T., Xu L. S. Effects of chromium(III) on DNA replication in vitro. Biol Trace Elem Res. 1989 Jul-Sep;21:61–71. doi: 10.1007/BF02917237. [DOI] [PubMed] [Google Scholar]
  14. Wang T. S., Eichler D. C., Korn D. Effect of Mn2+ on the in vitro activity of human deoxyribonucleic acid polymerase beta. Biochemistry. 1977 Nov 1;16(22):4927–4934. doi: 10.1021/bi00641a029. [DOI] [PubMed] [Google Scholar]
  15. Wetterhahn K. E., Hamilton J. W., Aiyar J., Borges K. M., Floyd R. Mechanism of chromium(VI) carcinogenesis. Reactive intermediates and effect on gene expression. Biol Trace Elem Res. 1989 Jul-Sep;21:405–411. doi: 10.1007/BF02917282. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES