Abstract
A subgroup from a National Institute of Environmental Health Sciences, workshop concerned with characterizing the effects of endocrine disruptors on human health at environmental exposure levels considered the question, If diethylstilbestrol (DES) were introduced into the market for human use today and likely to result in low-dose exposure of the human fetus, what would be required to assess risk? On the basis of an analysis of the quality of data on human DES exposure, the critical times and doses for inducing genital tract malformations and cancer must be determined. This would be facilitated through analysis of the ontogeny of estrogen receptor expression in the developing human genital tract. Models of low-dose estrogenic effects will have to be developed for human and rodent genital tract development. Mouse models offer many advantages over other potential animal models because of the wealth of the earlier literature, the availability of sensitive end points, the availability of mutant lines, and the possibility of generating genetically engineered model systems. Through multidisciplinary approaches, it should be possible to elucidate the cellular and molecular mechanisms of endocrine disruption elicited by estrogens during development and facilitate an assessment of risk to humans.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bekker M. H., Heck G. L., Vingerhoets A. J. Gender-identity, body-experience, sexuality, and the wish for having children in DES-daughters. Women Health. 1996;24(2):65–82. doi: 10.1300/J013v24n02_04. [DOI] [PubMed] [Google Scholar]
- Brandenberger A. W., Tee M. K., Lee J. Y., Chao V., Jaffe R. B. Tissue distribution of estrogen receptors alpha (ER-alpha) and beta (ER-beta) mRNA in the midgestational human fetus. J Clin Endocrinol Metab. 1997 Oct;82(10):3509–3512. doi: 10.1210/jcem.82.10.4400. [DOI] [PubMed] [Google Scholar]
- Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dollé P., Izpisúa-Belmonte J. C., Brown J. M., Tickle C., Duboule D. HOX-4 genes and the morphogenesis of mammalian genitalia. Genes Dev. 1991 Oct;5(10):1767–1767. doi: 10.1101/gad.5.10.1767. [DOI] [PubMed] [Google Scholar]
- Glatstein I. Z., Yeh J. Ontogeny of the estrogen receptor in the human fetal uterus. J Clin Endocrinol Metab. 1995 Mar;80(3):958–964. doi: 10.1210/jcem.80.3.7883857. [DOI] [PubMed] [Google Scholar]
- Golden R. J., Noller K. L., Titus-Ernstoff L., Kaufman R. H., Mittendorf R., Stillman R., Reese E. A. Environmental endocrine modulators and human health: an assessment of the biological evidence. Crit Rev Toxicol. 1998 Mar;28(2):109–227. doi: 10.1080/10408449891344191. [DOI] [PubMed] [Google Scholar]
- Halling A., Forsberg J. G. Acute and permanent growth effects in the mouse uterus after neonatal treatment with estrogens. Reprod Toxicol. 1993;7(2):137–153. doi: 10.1016/0890-6238(93)90248-6. [DOI] [PubMed] [Google Scholar]
- Hatch E. E., Palmer J. R., Titus-Ernstoff L., Noller K. L., Kaufman R. H., Mittendorf R., Robboy S. J., Hyer M., Cowan C. M., Adam E. Cancer risk in women exposed to diethylstilbestrol in utero. JAMA. 1998 Aug 19;280(7):630–634. doi: 10.1001/jama.280.7.630. [DOI] [PubMed] [Google Scholar]
- Herbst A. L., Anderson D. Clear cell adenocarcinoma of the vagina and cervix secondary to intrauterine exposure to diethylstilbestrol. Semin Surg Oncol. 1990;6(6):343–346. doi: 10.1002/ssu.2980060609. [DOI] [PubMed] [Google Scholar]
- Herbst A. L., Ulfelder H., Poskanzer D. C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971 Apr 15;284(15):878–881. doi: 10.1056/NEJM197104222841604. [DOI] [PubMed] [Google Scholar]
- Hornsby P. P., Wilcox A. J., Weinberg C. R., Herbst A. L. Effects on the menstrual cycle of in utero exposure to diethylstilbestrol. Am J Obstet Gynecol. 1994 Mar;170(3):709–715. doi: 10.1016/s0002-9378(94)70268-3. [DOI] [PubMed] [Google Scholar]
- Jensen T. K., Toppari J., Keiding N., Skakkebaek N. E. Do environmental estrogens contribute to the decline in male reproductive health? Clin Chem. 1995 Dec;41(12 Pt 2):1896–1901. [PubMed] [Google Scholar]
- Kaufman R. H., Adam E., Noller K., Irwin J. F., Gray M. Upper genital tract changes and infertility in diethylstilbestrol-exposed women. Am J Obstet Gynecol. 1986 Jun;154(6):1312–1318. doi: 10.1016/0002-9378(86)90718-0. [DOI] [PubMed] [Google Scholar]
- Kuiper G. G., Enmark E., Pelto-Huikko M., Nilsson S., Gustafsson J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5925–5930. doi: 10.1073/pnas.93.12.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine A. C., Wang J. P., Ren M., Eliashvili E., Russell D. W., Kirschenbaum A. Immunohistochemical localization of steroid 5 alpha-reductase 2 in the human male fetal reproductive tract and adult prostate. J Clin Endocrinol Metab. 1996 Jan;81(1):384–389. doi: 10.1210/jcem.81.1.8550782. [DOI] [PubMed] [Google Scholar]
- Majumder P. K., Kumar V. L. Androgen receptor mRNA detection in the human foetal prostate. Int Urol Nephrol. 1997;29(6):633–635. doi: 10.1007/BF02552178. [DOI] [PubMed] [Google Scholar]
- Marselos M., Tomatis L. Diethylstilboestrol: I, Pharmacology, Toxicology and carcinogenicity in humans. Eur J Cancer. 1992;28A(6-7):1182–1189. doi: 10.1016/0959-8049(92)90482-h. [DOI] [PubMed] [Google Scholar]
- McLachlan J. A., Newbold R. R., Bullock B. C. Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res. 1980 Nov;40(11):3988–3999. [PubMed] [Google Scholar]
- McLachlan J. A., Newbold R. R., Shah H. C., Hogan M. D., Dixon R. L. Reduced fertility in female mice exposed transplacentally to diethylstilbestrol (DES). Fertil Steril. 1982 Sep;38(3):364–371. doi: 10.1016/s0015-0282(16)46520-9. [DOI] [PubMed] [Google Scholar]
- Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newbold R. R., Jefferson W. N., Padilla-Burgos E., Bullock B. C. Uterine carcinoma in mice treated neonatally with tamoxifen. Carcinogenesis. 1997 Dec;18(12):2293–2298. doi: 10.1093/carcin/18.12.2293. [DOI] [PubMed] [Google Scholar]
- Newbold R. R., Teng C. T., Beckman W. C., Jr, Jefferson W. N., Hanson R. B., Miller J. V., McLachlan J. A. Fluctuations of lactoferrin protein and messenger ribonucleic acid in the reproductive tract of the mouse during the estrous cycle. Biol Reprod. 1992 Nov;47(5):903–915. doi: 10.1095/biolreprod47.5.903. [DOI] [PubMed] [Google Scholar]
- Newbold R. Cellular and molecular effects of developmental exposure to diethylstilbestrol: implications for other environmental estrogens. Environ Health Perspect. 1995 Oct;103 (Suppl 7):83–87. doi: 10.1289/ehp.95103s783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pavlova A., Boutin E., Cunha G., Sassoon D. Msx1 (Hox-7.1) in the adult mouse uterus: cellular interactions underlying regulation of expression. Development. 1994 Feb;120(2):335–345. doi: 10.1242/dev.120.2.335. [DOI] [PubMed] [Google Scholar]
- Robboy S. J., Taguchi O., Cunha G. R. Normal development of the human female reproductive tract and alterations resulting from experimental exposure to diethylstilbestrol. Hum Pathol. 1982 Mar;13(3):190–198. doi: 10.1016/s0046-8177(82)80177-9. [DOI] [PubMed] [Google Scholar]
- Sugimura Y., Cunha G. R., Yonemura C. U., Kawamura J. Temporal and spatial factors in diethylstilbestrol-induced squamous metaplasia of the developing human prostate. Hum Pathol. 1988 Feb;19(2):133–139. doi: 10.1016/s0046-8177(88)80340-x. [DOI] [PubMed] [Google Scholar]
- Taguchi O., Cunha G. R., Lawrence W. D., Robboy S. J. Timing and irreversibility of Müllerian duct inhibition in the embryonic reproductive tract of the human male. Dev Biol. 1984 Dec;106(2):394–398. doi: 10.1016/0012-1606(84)90238-0. [DOI] [PubMed] [Google Scholar]
- Taguchi O., Cunha G. R., Robboy S. J. Experimental study of the effect of diethylstilbestrol on the development of the human female reproductive tract. Biol Res Pregnancy Perinatol. 1983;4(2):56–70. [PubMed] [Google Scholar]
- Taguchi O., Cunha G. R., Robboy S. J. Expression of nuclear estrogen-binding sites within developing human fetal vagina and urogenital sinus. Am J Anat. 1986 Dec;177(4):473–480. doi: 10.1002/aja.1001770405. [DOI] [PubMed] [Google Scholar]
- Taylor H. S., Vanden Heuvel G. B., Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997 Dec;57(6):1338–1345. doi: 10.1095/biolreprod57.6.1338. [DOI] [PubMed] [Google Scholar]
- Teng C. T., Pentecost B. T., Chen Y. H., Newbold R. R., Eddy E. M., McLachlan J. A. Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology. 1989 Feb;124(2):992–999. doi: 10.1210/endo-124-2-992. [DOI] [PubMed] [Google Scholar]
- Teng C. T., Walker M. P., Bhattacharyya S. N., Klapper D. G., DiAugustine R. P., McLachlan J. A. Purification and properties of an oestrogen-stimulated mouse uterine glycoprotein (approx. 70 kDa). Biochem J. 1986 Dec 1;240(2):413–422. doi: 10.1042/bj2400413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vingerhoets A. J., Assies J., Goodkin K., Van Heck G. L., Bekker M. H. Prenatal diethylstilbestrol exposure and self-reported immune-related diseases. Eur J Obstet Gynecol Reprod Biol. 1998 Apr;77(2):205–209. doi: 10.1016/s0301-2115(97)00274-1. [DOI] [PubMed] [Google Scholar]
- Walmer D. K., Padin C. J., Wrona M. A., Healy B. E., Bentley R. C., Tsao M. S., Kohler M. F., McLachlan J. A., Gray K. D. Malignant transformation of the human endometrium is associated with overexpression of lactoferrin messenger RNA and protein. Cancer Res. 1995 Mar 1;55(5):1168–1175. [PubMed] [Google Scholar]
- Warot X., Fromental-Ramain C., Fraulob V., Chambon P., Dollé P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development. 1997 Dec;124(23):4781–4791. doi: 10.1242/dev.124.23.4781. [DOI] [PubMed] [Google Scholar]
- Yonemura C. Y., Cunha G. R., Sugimura Y., Mee S. L. Temporal and spatial factors in diethylstilbestrol-induced squamous metaplasia in the developing human prostate. II. Persistent changes after removal of diethylstilbestrol. Acta Anat (Basel) 1995;153(1):1–11. doi: 10.1159/000147709. [DOI] [PubMed] [Google Scholar]
- vom Saal F. S., Cooke P. S., Buchanan D. L., Palanza P., Thayer K. A., Nagel S. C., Parmigiani S., Welshons W. V. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):239–260. doi: 10.1177/074823379801400115. [DOI] [PubMed] [Google Scholar]
- vom Saal F. S., Timms B. G., Montano M. M., Palanza P., Thayer K. A., Nagel S. C., Dhar M. D., Ganjam V. K., Parmigiani S., Welshons W. V. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2056–2061. doi: 10.1073/pnas.94.5.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]