Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1989 May;81:189–192. doi: 10.1289/ehp.8981189

Molecular alterations critical to the development of arteriosclerotic plaques: a role for environmental agents.

A Penn 1
PMCID: PMC1567514  PMID: 2667979

Abstract

Cardiovascular disease (CVD) is the single greatest cause of death in the United States and in Western Europe. There is strong epidemiologic evidence for an interaction of environmental and genetic factors in the development of clinically significant episodes of CVD. However, the specific contributions of each of these components to the onset and development of CVD remain unclear. According to the monoclonal hypothesis, arteriosclerotic plaques, the principal lesions associated with CVD, are monoclonal in origin and can be considered benign smooth muscle cells tumors of the artery wall. It follows that somatic cell alterations, possibly brought about by chemical mutagens or viruses, may play critical roles in plaque formation. During the past decade, evidence has been presented from a number of laboratories, including ours, that in animal model systems, both viruses and chemical carcinogens can play a role in the appearance and development of arteriosclerotic plaques. We have recently provided evidence consistent with the view that somatic cell alterations are critical to plaque development in man: DNA from human arteriosclerotic plaques. transforms cells in vitro and injection of these transformed cells into nude mice results in tumor formation. Thus, plaque DNA behaves similarly to tumor DNA under defined assay conditions.

Full text

PDF
189

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert R. E., Vanderlaan M., Burns F. J., Nishizumi M. Effect of carcinogens on chicken atherosclerosis. Cancer Res. 1977 Jul;37(7 Pt 1):2232–2235. [PubMed] [Google Scholar]
  2. Barrett T. B., Benditt E. P. sis (platelet-derived growth factor B chain) gene transcript levels are elevated in human atherosclerotic lesions compared to normal artery. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1099–1103. doi: 10.1073/pnas.84.4.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batastini G., Penn A. An ultrastructural comparison of carcinogen-associated and spontaneous aortic lesions in the cockerel. Am J Pathol. 1984 Mar;114(3):403–409. [PMC free article] [PubMed] [Google Scholar]
  4. Benditt E. P., Barrett T., McDougall J. K. Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6386–6389. doi: 10.1073/pnas.80.20.6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1753–1756. doi: 10.1073/pnas.70.6.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bond J. A., Kocan R. M., Benditt E. P., Juchau M. R. Metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in cultured human fetal aortic smooth muscle cells. Life Sci. 1979 Jul 30;25(5):425–430. doi: 10.1016/0024-3205(79)90574-5. [DOI] [PubMed] [Google Scholar]
  7. Bond J. A., Yang H. Y., Majesky M. W., Benditt E. P., Juchau M. R. Metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in chicken aortas: monooxygenation, bioactivation to mutagens, and covalent binding to DNA in vitro. Toxicol Appl Pharmacol. 1980 Feb;52(2):323–335. doi: 10.1016/0041-008x(80)90119-2. [DOI] [PubMed] [Google Scholar]
  8. Bos J. L., Fearon E. R., Hamilton S. R., Verlaan-de Vries M., van Boom J. H., van der Eb A. J., Vogelstein B. Prevalence of ras gene mutations in human colorectal cancers. 1987 May 28-Jun 3Nature. 327(6120):293–297. doi: 10.1038/327293a0. [DOI] [PubMed] [Google Scholar]
  9. Fabricant C. G., Fabricant J., Litrenta M. M., Minick C. R. Virus-induced atherosclerosis. J Exp Med. 1978 Jul 1;148(1):335–340. doi: 10.1084/jem.148.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forrester K., Almoguera C., Han K., Grizzle W. E., Perucho M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. 1987 May 28-Jun 3Nature. 327(6120):298–303. doi: 10.1038/327298a0. [DOI] [PubMed] [Google Scholar]
  11. Hajjar D. P., Fabricant C. G., Minick C. R., Fabricant J. Virus-induced atherosclerosis. Herpesvirus infection alters aortic cholesterol metabolism and accumulation. Am J Pathol. 1986 Jan;122(1):62–70. [PMC free article] [PubMed] [Google Scholar]
  12. Hajjar D. P., Falcone D. J., Fabricant C. G., Fabricant J. Altered cholesteryl ester cycle is associated with lipid accumulation in herpesvirus-infected arterial smooth muscle cells. J Biol Chem. 1985 May 25;260(10):6124–6128. [PubMed] [Google Scholar]
  13. Kannel W. B. Status of risk factors and their consideration in antihypertensive therapy. Am J Cardiol. 1987 Jan 23;59(2):80A–90A. doi: 10.1016/0002-9149(87)90182-2. [DOI] [PubMed] [Google Scholar]
  14. Majesky M. W., Reidy M. A., Benditt E. P., Juchau M. R. Focal smooth muscle proliferation in the aortic intima produced by an initiation-promotion sequence. Proc Natl Acad Sci U S A. 1985 May;82(10):3450–3454. doi: 10.1073/pnas.82.10.3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Majesky M. W., Yang H. Y., Benditt E. P., Juchau M. R. Carcinogenesis and atherogenesis: differences in monooxygenase inducibility and bioactivation of benzo[a]pyrene in aortic and hepatic tissues of atherosclerosis-susceptible versus resistant pigeons. Carcinogenesis. 1983;4(6):647–652. doi: 10.1093/carcin/4.6.647. [DOI] [PubMed] [Google Scholar]
  16. Minick C. R., Fabricant C. G., Fabricant J., Litrenta M. M. Atheroarteriosclerosis induced by infection with a herpesvirus. Am J Pathol. 1979 Sep;96(3):673–706. [PMC free article] [PubMed] [Google Scholar]
  17. Pearson T. A., Dillman J. M., Heptinstall R. H. The clonal characteristics of human aortic intima. Comparison with fatty streaks and normal media. Am J Pathol. 1983 Oct;113(1):33–40. [PMC free article] [PubMed] [Google Scholar]
  18. Penn A. L., Batastini G. G., Albert R. E. Age-dependent changes in prevalence, size and proliferation of arterial lesions in cockerels. I. Spontaneous lesions. Artery. 1980;7(6):448–463. [PubMed] [Google Scholar]
  19. Penn A. L., Batastini G. G., Albert R. E. Age-dependent changes in prevalence, size and proliferation of arterial lesions in cockerels. II. Carcinogen-associated lesions. Artery. 1981;9(5):382–393. [PubMed] [Google Scholar]
  20. Penn A., Batastini G., Soloman J., Burns F., Albert R. Dose-dependent size increases of aortic lesions following chronic exposure to 7,12-dimethylbenz(a)anthracene. Cancer Res. 1981 Feb;41(2):588–592. [PubMed] [Google Scholar]
  21. Penn A., Garte S. J., Warren L., Nesta D., Mindich B. Transforming gene in human atherosclerotic plaque DNA. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7951–7955. doi: 10.1073/pnas.83.20.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ross R., Glomset J. A. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973 Jun 29;180(4093):1332–1339. doi: 10.1126/science.180.4093.1332. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES