Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1989 Feb;79:249–258. doi: 10.1289/ehp.8979249

Mass transfer rates of polycyclic aromatic hydrocarbons between micron-size particles and their environment--theoretical estimates.

P Gerde 1, P Scholander 1
PMCID: PMC1567595  PMID: 2707206

Abstract

This paper presents a mathematical model of how rapidly polycyclic aromatic hydrocarbons (PAHs) adsorb onto initially clean micron-size particles in the ambient air and how fast these substances are likely to be desorbed from the particles after deposition on the surface lining layer of the lung. Results show that, on the one hand, the very low gas-phase concentrations of PAHs in the ambient air should result in a comparatively slow transfer of such compounds to micron-size particles, a process that may last from minutes to hours. On the other hand, the comparatively high solubilities of PAHs in the lining layer of the lung should promote an almost instantaneous release of PAHs onto nonporous particles, and a release within a matter of minutes of most PAHs reversibly adsorbed onto the interior surfaces of porous particles. Two important conclusions can be drawn from this. First, the PAHs in tobacco smoke do not have time enough to interact in the gas phase with other airborne particles before these agents are inhaled into the smoker's lungs. Therefore, adsorption in the gas phase of PAHs onto asbestos fibers can hardly be a characteristic parameter in the mechanism behind the synergistic effect between tobacco smoking and asbestos exposure for the induction of bronchial cancer. Second, the release rate of reversibly adsorbed PAHs from their carrier particles in the lung seems to be so fast that this cannot be a parameter of importance in directly influencing the residence times of such substances in the lung.

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brockhaus A., Tomingas R., Dehnen W., Pott F., Beck E. G. Das Verhalten kanzerogener Kohlenwasserstoffe in der Lunge. Prax Pneumol. 1971 Sep;25(9):519–526. [PubMed] [Google Scholar]
  2. ERMALA P., HOLSTI L. R. Distribution and absorption of tobacco tar in the organs of the respiratory tract. Cancer. 1955 Jul-Aug;8(4):673–678. doi: 10.1002/1097-0142(1955)8:4<673::aid-cncr2820080404>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  3. Gerde P., Scholander P. A hypothesis concerning asbestos carcinogenicity: the migration of lipophilic carcinogens in adsorbed lipid bilayers. Ann Occup Hyg. 1987;31(3):395–400. doi: 10.1093/annhyg/31.3.395. [DOI] [PubMed] [Google Scholar]
  4. Gerde P., Scholander P. A mathematical model of the penetration of polycyclic aromatic hydrocarbons through the bronchial lining layer. Environ Res. 1987 Dec;44(2):321–334. doi: 10.1016/s0013-9351(87)80241-4. [DOI] [PubMed] [Google Scholar]
  5. Henry M. C., Port C. D., Kaufman D. G. Importance of physical properties of benzo(a)pyrene-ferric oxide mixtures in lung tumor induction. Cancer Res. 1975 Jan;35(1):207–217. [PubMed] [Google Scholar]
  6. KOTIN P., FALK H. L. The role and action of environmental agents in the pathogenesis of hung cancer. I. Air pollutants. Cancer. 1959 Jan-Feb;12(1):147–163. doi: 10.1002/1097-0142(195901/02)12:1<147::aid-cncr2820120121>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  7. Lakowicz J. R., Bevan D. R., Riemer S. C. Transport of a carcinogen, benzo[a]pyrene, from particulates to lipid bilayers: a model for the fate of particle-adsorbed polynuclear aromatic hydrocarbons which are retained in the lungs. Biochim Biophys Acta. 1980 May 7;629(2):243–258. doi: 10.1016/0304-4165(80)90098-7. [DOI] [PubMed] [Google Scholar]
  8. Light W. G., Wei E. T. Surface charge and hemolytic activity of asbestos. Environ Res. 1977 Feb;13(1):135–145. doi: 10.1016/0013-9351(77)90012-3. [DOI] [PubMed] [Google Scholar]
  9. Lopez-Vidriero M. T., Reid L. Respiratory tract fluid--chemical and physical properties of airway mucus. Eur J Respir Dis Suppl. 1980;110:21–26. [PubMed] [Google Scholar]
  10. Mossman B. T., Craighead J. E. Mechanisms of asbestos carcinogenesis. Environ Res. 1981 Aug;25(2):269–280. doi: 10.1016/0013-9351(81)90028-1. [DOI] [PubMed] [Google Scholar]
  11. Mossman B. T., Eastman A., Landesman J. M., Bresnick E. Effects of crocidolite and chrysotile asbestos on cellular uptake and metabolism of benzo(a)pyrene in hamster tracheal epithelial cells. Environ Health Perspect. 1983 Sep;51:331–335. doi: 10.1289/ehp.8351331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SHABAD L. M. Experimental cancer of the lung. J Natl Cancer Inst. 1962 Jun;28:1305–1332. [PubMed] [Google Scholar]
  13. Saffiotti U., Cefis F., Kolb L. H. A method for the experimental induction of bronchogenic carcinoma. Cancer Res. 1968 Jan;28(1):104–124. [PubMed] [Google Scholar]
  14. Selikoff I. J., Hammond E. C., Churg J. Asbestos exposure, smoking, and neoplasia. JAMA. 1968 Apr 8;204(2):106–112. [PubMed] [Google Scholar]
  15. Sun J. D., Wolff R. K., Kanapilly G. M. Deposition, retention, and biological fate of inhaled benzo(a)pyrene adsorbed onto ultrafine particles and as a pure aerosol. Toxicol Appl Pharmacol. 1982 Sep 15;65(2):231–244. doi: 10.1016/0041-008x(82)90005-9. [DOI] [PubMed] [Google Scholar]
  16. Woodworth C. D., Mossman B. T., Craighead J. E. Squamous metaplasia of the respiratory tract. Possible pathogenic role in asbestos-associated bronchogenic carcinoma. Lab Invest. 1983 May;48(5):578–584. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES