Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1989 Mar;80:49–59. doi: 10.1289/ehp.898049

Mechanisms of differentiation in melanoma cells and melanocytes.

D C Bennett 1
PMCID: PMC1567610  PMID: 2647484

Abstract

Literature is reviewed on the mechanisms of differentiation in mammalian melanoma cells and normal melanocytes. Pigment cells are particularly useful for studies requiring the observation of differentiation in living cells, for example, studies of commitment. Topics discussed include melanin synthesis and other markers of pigment cell differentiation; stochastic models of differentiation and commitment; the lability of early stages of differentiation; extracellular factors affecting pigment cell differentiation, with implications for intracellular controls; the role of proliferation and the cell cycle in differentiation, and the relative roles of changes in transcription, translation, and posttranslational processes.

Full text

PDF
49

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Malek Z. A., Swope V. B., Amornsiripanitch N., Nordlund J. J. In vitro modulation of proliferation and melanization of S91 melanoma cells by prostaglandins. Cancer Res. 1987 Jun 15;47(12):3141–3146. [PubMed] [Google Scholar]
  2. Albino A. P., Houghton A. N. Cell surface antigens of melanocytes and melanoma. Cancer Surv. 1985;4(1):185–211. [PubMed] [Google Scholar]
  3. Barber J. I., Townsend D., Olds D. P., King R. A. Decreased dopachrome oxidoreductase activity in yellow mice. J Hered. 1985 Jan-Feb;76(1):59–60. doi: 10.1093/oxfordjournals.jhered.a110019. [DOI] [PubMed] [Google Scholar]
  4. Bennett D. C., Bridges K., McKay I. A. Clonal separation of mature melanocytes from premelanocytes in a diploid human cell strain: spontaneous and induced pigmentation of premelanocytes. J Cell Sci. 1985 Aug;77:167–183. doi: 10.1242/jcs.77.1.167. [DOI] [PubMed] [Google Scholar]
  5. Bennett D. C., Cooper P. J., Hart I. R. A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer. 1987 Mar 15;39(3):414–418. doi: 10.1002/ijc.2910390324. [DOI] [PubMed] [Google Scholar]
  6. Bennett D. C., Dexter T. J., Ormerod E. J., Hart I. R. Increased experimental metastatic capacity of a murine melanoma following induction of differentiation. Cancer Res. 1986 Jul;46(7):3239–3244. [PubMed] [Google Scholar]
  7. Bennett D. C. Differentiation in mouse melanoma cells: initial reversibility and an on-off stochastic model. Cell. 1983 Sep;34(2):445–453. doi: 10.1016/0092-8674(83)90378-1. [DOI] [PubMed] [Google Scholar]
  8. Bennett D. C. Instability and stabilization in melanoma cell differentiation. Curr Top Dev Biol. 1986;20:333–344. doi: 10.1016/s0070-2153(08)60673-0. [DOI] [PubMed] [Google Scholar]
  9. Breeden L., Nasmyth K. Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell. 1987 Feb 13;48(3):389–397. doi: 10.1016/0092-8674(87)90190-5. [DOI] [PubMed] [Google Scholar]
  10. Bregman M. D., Abdel Malek Z. A., Meyskens F. L., Jr Anchorage-independent growth of murine melanoma in serum-less media is dependent on insulin or melanocyte-stimulating hormone. Exp Cell Res. 1985 Apr;157(2):419–428. doi: 10.1016/0014-4827(85)90127-2. [DOI] [PubMed] [Google Scholar]
  11. Brooks R. F., Bennett D. C., Smith J. A. Mammalian cell cycles need two random transitions. Cell. 1980 Feb;19(2):493–504. doi: 10.1016/0092-8674(80)90524-3. [DOI] [PubMed] [Google Scholar]
  12. Burns F. J., Tannock I. F. On the existence of a G 0 -phase in the cell cycle. Cell Tissue Kinet. 1970 Oct;3(4):321–334. doi: 10.1111/j.1365-2184.1970.tb00340.x. [DOI] [PubMed] [Google Scholar]
  13. CATTANEO S. M., QUASTLER H., SHERMAN F. G. Proliferative cycle in the growing hair follicle of the mouse. Nature. 1961 Jun 3;190:923–924. doi: 10.1038/190923a0. [DOI] [PubMed] [Google Scholar]
  14. Cloudman A. M. THE EFFECT OF AN EXTRA-CHROMO-SOMAL INFLUENCE UPON TRANSPLANTED SPONTANEOUS TUMORS IN MICE. Science. 1941 Apr 18;93(2416):380–381. doi: 10.1126/science.93.2416.380. [DOI] [PubMed] [Google Scholar]
  15. Dexter T. J., Bennett D. C. Differentiation apparently repressed by the nucleus. Rapidly-induced pigmentation of enucleated melanoma cells. Exp Cell Res. 1987 Jan;168(1):255–264. doi: 10.1016/0014-4827(87)90433-2. [DOI] [PubMed] [Google Scholar]
  16. Fisher P. B., Mufson R. A., Weinstein I. B. Interferon inhibits melanogenesis in B-16 mouse melanoma cells. Biochem Biophys Res Commun. 1981 May 29;100(2):823–830. doi: 10.1016/s0006-291x(81)80248-3. [DOI] [PubMed] [Google Scholar]
  17. Fisher P. B., Prignoli D. R., Hermo H., Jr, Weinstein I. B., Pestka S. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells. J Interferon Res. 1985 Winter;5(1):11–22. doi: 10.1089/jir.1985.5.11. [DOI] [PubMed] [Google Scholar]
  18. Friedmann P. S., Gilchrest B. A. Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J Cell Physiol. 1987 Oct;133(1):88–94. doi: 10.1002/jcp.1041330111. [DOI] [PubMed] [Google Scholar]
  19. Fuller B. B. Activation of tyrosinase in mouse melanoma cell cultures. In Vitro Cell Dev Biol. 1987 Sep;23(9):633–640. doi: 10.1007/BF02621072. [DOI] [PubMed] [Google Scholar]
  20. Fuller B. B., Lunsford J. B., Iman D. S. Alpha-melanocyte-stimulating hormone regulation of tyrosinase in Cloudman S-91 mouse melanoma cell cultures. J Biol Chem. 1987 Mar 25;262(9):4024–4033. [PubMed] [Google Scholar]
  21. Fuller B. B., Meyskens F. L., Jr Endocrine responsiveness in human melanocytes and melanoma cells in culture. J Natl Cancer Inst. 1981 May;66(5):799–802. [PubMed] [Google Scholar]
  22. Glimelius B., Weston J. A. Analysis of developmentally homogeneous neural crest cell populations in vitro. II. A tumor-promoter (TPA) delays differentiation and promotes cell proliferation. Dev Biol. 1981 Feb;82(1):95–101. doi: 10.1016/0012-1606(81)90431-0. [DOI] [PubMed] [Google Scholar]
  23. Glovanella B. C., Stehlin J. S., Santamaria C., Yim S. O., Morgan A. C., Williams L. J., Jr, Leibovitz A., Fialkow P. J., Mumford D. M. Human neoplastic and normal cells in tissue culture. I. Cell lines derived from malignant melanomas and normal melanocytes. J Natl Cancer Inst. 1976 Jun;56(6):1131–1142. doi: 10.1093/jnci/56.6.1131. [DOI] [PubMed] [Google Scholar]
  24. Gusella J. F., Weil S. C., Tsiftsoglou A. S., Volloch V., Neumann J. R., Keys C., Housman D. E. Hemin does not cause commitment of murine erythroleukemia (MEL) cells to terminal differentiation. Blood. 1980 Sep;56(3):481–487. [PubMed] [Google Scholar]
  25. Gusella J., Geller R., Clarke B., Weeks V., Housman D. Commitment to erythroid differentiation by friend erythroleukemia cells: a stochastic analysis. Cell. 1976 Oct;9(2):221–229. doi: 10.1016/0092-8674(76)90113-6. [DOI] [PubMed] [Google Scholar]
  26. HU F., CARDELL R. R. THE ULTRASTRUCTURE OF PIGMENTED MELANOMA CELLS IN CONTINUOUS CULTURE. J Invest Dermatol. 1964 Jan;42:67–79. doi: 10.1038/jid.1964.15. [DOI] [PubMed] [Google Scholar]
  27. Halaban R., Lerner A. B. The dual effect of melanocyte-stimulating hormone (MSH) on the growth of cultured mouse melanoma cells. Exp Cell Res. 1977 Aug;108(1):111–117. doi: 10.1016/s0014-4827(77)80016-5. [DOI] [PubMed] [Google Scholar]
  28. Halaban R., Pomerantz S. H., Marshall S., Lambert D. T., Lerner A. B. Regulation of tyrosinase in human melanocytes grown in culture. J Cell Biol. 1983 Aug;97(2):480–488. doi: 10.1083/jcb.97.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hearing V. J., Jiménez M. Mammalian tyrosinase--the critical regulatory control point in melanocyte pigmentation. Int J Biochem. 1987;19(12):1141–1147. doi: 10.1016/0020-711x(87)90095-4. [DOI] [PubMed] [Google Scholar]
  30. Hirobe T. Genes involved in regulating the melanocyte and melanoblast-melanocyte populations in the epidermis of newborn mouse skin. J Exp Zool. 1982 Nov 1;223(3):257–264. doi: 10.1002/jez.1402230307. [DOI] [PubMed] [Google Scholar]
  31. Hoal-Van Helden E. G., Wilson E. L., Dowdle E. B. Characterization of seven human melanoma cell lines: melanogenesis and secretion of plasminogen activators. Br J Cancer. 1986 Aug;54(2):287–295. doi: 10.1038/bjc.1986.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hosoi J., Abe E., Suda T., Kuroki T. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 1985 Apr;45(4):1474–1478. [PubMed] [Google Scholar]
  33. Houghton A. N., Eisinger M., Albino A. P., Cairncross J. G., Old L. J. Surface antigens of melanocytes and melanomas. Markers of melanocyte differentiation and melanoma subsets. J Exp Med. 1982 Dec 1;156(6):1755–1766. doi: 10.1084/jem.156.6.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Houghton A. N., Real F. X., Davis L. J., Cordon-Cardo C., Old L. J. Phenotypic heterogeneity of melanoma. Relation to the differentiation program of melanoma cells. J Exp Med. 1987 Mar 1;165(3):812–829. doi: 10.1084/jem.165.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hu F., Mah K., Teramura D. J. Electron microscopic and cytochemical observations of theophylline and melanocyte-stimulating hormone effects on melanoma cells in culture. Cancer Res. 1982 Jul;42(7):2786–2791. [PubMed] [Google Scholar]
  36. Huberman E., Heckman C., Langenbach R. Stimulation of differentiated functions in human melanoma cells by tumor-promoting agents and dimethyl sulfoxide. Cancer Res. 1979 Jul;39(7 Pt 1):2618–2624. [PubMed] [Google Scholar]
  37. Jackson I. J. A cDNA encoding tyrosinase-related protein maps to the brown locus in mouse. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4392–4396. doi: 10.1073/pnas.85.12.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Jerdan J. A., Varner H. H., Greenberg J. H., Horn V. J., Martin G. R. Isolation and characterization of a factor from calf serum that promotes the pigmentation of embryonic and transformed melanocytes. J Cell Biol. 1985 May;100(5):1493–1498. doi: 10.1083/jcb.100.5.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Jetten A. M., Ganong B. R., Vandenbark G. R., Shirley J. E., Bell R. M. Role of protein kinase C in diacylglycerol-mediated induction of ornithine decarboxylase and reduction of epidermal growth factor binding. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1941–1945. doi: 10.1073/pnas.82.7.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Johnson G. S., Pastan I. N 6 ,O 2 '-dibutyryl adenosine 3',5'-monophosphate induces pigment production in melanoma cells. Nat New Biol. 1972 Jun 28;237(78):267–268. doi: 10.1038/newbio237267a0. [DOI] [PubMed] [Google Scholar]
  41. Kline E. L., Carland K., Smith T. J. Triiodothyronine repression of imidazole-induced tyrosinase expression in B16 melanoma cells. Endocrinology. 1986 Nov;119(5):2118–2123. doi: 10.1210/endo-119-5-2118. [DOI] [PubMed] [Google Scholar]
  42. Konigsberg I. R., Sollmann P. A., Mixter L. O. The duration of the terminal G1 of fusing myoblasts. Dev Biol. 1978 Mar;63(1):11–26. doi: 10.1016/0012-1606(78)90109-4. [DOI] [PubMed] [Google Scholar]
  43. Kopf G. S., Lewis C. A., Vacquier V. D. Methylxanthines stimulate calcium transport and inhibit cyclic nucleotide phosphodiesterases in abalone sperm. Dev Biol. 1983 Sep;99(1):115–120. doi: 10.1016/0012-1606(83)90258-0. [DOI] [PubMed] [Google Scholar]
  44. Kreider J. W., Rosenthal M., Lengle N. Cyclic adenosine 3',5'-monophosphate in the control of melanoma cell replication and differentiation. J Natl Cancer Inst. 1973 Feb;50(2):555–558. doi: 10.1093/jnci/50.2.555. [DOI] [PubMed] [Google Scholar]
  45. Kreider J. W., Schmoyer M. E. Spontaneous maturation and differentiation of B16 melanoma cells in culture. J Natl Cancer Inst. 1975 Sep;55(3):641–647. doi: 10.1093/jnci/55.3.641. [DOI] [PubMed] [Google Scholar]
  46. Kreider J. W., Wade D. R., Rosenthal M., Densley T. Maturation and differentiation of B16 melanoma cells induced by theophylline treatment. J Natl Cancer Inst. 1975 Jun;54(6):1457–1467. doi: 10.1093/jnci/54.6.1457. [DOI] [PubMed] [Google Scholar]
  47. Kreiner P. W., Gold C. J., Keirns J. J., Brock W. A., Bitensky M. W. Hormonal control of melanocytes: MSH-sensitive adenyl cyclase in the Cloudman melanoma. Yale J Biol Med. 1973 Dec;46(5):583–591. [PMC free article] [PubMed] [Google Scholar]
  48. Kwon B. S., Halaban R., Kim G. S., Usack L., Pomerantz S., Haq A. K. A melanocyte-specific complementary DNA clone whose expression is inducible by melanotropin and isobutylmethyl xanthine. Mol Biol Med. 1987 Dec;4(6):339–355. [PubMed] [Google Scholar]
  49. Kwon B. S., Haq A. K., Pomerantz S. H., Halaban R. Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7473–7477. doi: 10.1073/pnas.84.21.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Körner A., Pawelek J. Activation of melanoma tyrosinase by a cyclic AMP-dependent protein kinase in a cell-free system. Nature. 1977 Jun 2;267(5610):444–447. doi: 10.1038/267444a0. [DOI] [PubMed] [Google Scholar]
  51. Laskin J. D., Mufson R. A., Weinstein I. B., Engelhardt D. L. Identification of a distinct phase during melanogenesis that is sensitive to extracellular pH and ionic strength. J Cell Physiol. 1980 Jun;103(3):467–474. doi: 10.1002/jcp.1041030312. [DOI] [PubMed] [Google Scholar]
  52. Laskin J. D., Piccinini L., Engelhardt D. L., Weinstein I. B. Specific protein production during melanogenesis in B16/C3 melanoma cells. J Cell Physiol. 1983 Jan;114(1):68–72. doi: 10.1002/jcp.1041140111. [DOI] [PubMed] [Google Scholar]
  53. Lotan R. Different susceptibilities of human melanoma and breast carcinoma cell lines to retinoic acid-induced growth inhibition. Cancer Res. 1979 Mar;39(3):1014–1019. [PubMed] [Google Scholar]
  54. Lotan R., Lotan D. Enhancement of melanotic expression in cultured mouse melanoma cells by retinoids. J Cell Physiol. 1981 Feb;106(2):179–189. doi: 10.1002/jcp.1041060203. [DOI] [PubMed] [Google Scholar]
  55. Mac Neil S., Walker S. W., Senior H. J., Bleehen S. S., Tomlinson S. Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth. J Invest Dermatol. 1984 Jul;83(1):15–19. doi: 10.1111/1523-1747.ep12261637. [DOI] [PubMed] [Google Scholar]
  56. MacWilliams H. K., Bonner J. T. The prestalk-prespore pattern in cellular slime molds. Differentiation. 1979;14(1-2):1–22. doi: 10.1111/j.1432-0436.1979.tb01006.x. [DOI] [PubMed] [Google Scholar]
  57. Matthew E., Laskin J. D., Zimmerman E. A., Weinstein I. B., Hsu K. C., Engelhardt D. L. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3935–3939. doi: 10.1073/pnas.78.6.3935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Mayer T. C. The migratory pathway of neural crest cells into the skin of mouse embryos. Dev Biol. 1973 Sep;34(1):39–46. doi: 10.1016/0012-1606(73)90337-0. [DOI] [PubMed] [Google Scholar]
  59. Montefiori D. C., Kline E. L. Regulation of cell division and of tyrosinase in B16 melanoma cells by imidazole: a possible role for the concept of metabolite gene regulation in mammalian cells. J Cell Physiol. 1981 Feb;106(2):283–291. doi: 10.1002/jcp.1041060215. [DOI] [PubMed] [Google Scholar]
  60. Mufson R. A., Fisher P. B., Weinstein I. B. Effect of phorbol ester tumor promoters on the expression of melanogenesis in B-16 melanoma cells. Cancer Res. 1979 Oct;39(10):3915–3919. [PubMed] [Google Scholar]
  61. Nadal-Ginard B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 1978 Nov;15(3):855–864. doi: 10.1016/0092-8674(78)90270-2. [DOI] [PubMed] [Google Scholar]
  62. Nguyen H. T., Medford R. M., Nadal-Ginard B. Reversibility of muscle differentiation in the absence of commitment: analysis of a myogenic cell line temperature-sensitive for commitment. Cell. 1983 Aug;34(1):281–293. doi: 10.1016/0092-8674(83)90159-9. [DOI] [PubMed] [Google Scholar]
  63. O'Keefe E., Cuatrecasas P. Cholera toxin mimics melanocyte stimulating hormone in inducing differentiation in melanoma cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2500–2504. doi: 10.1073/pnas.71.6.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Oetting W., Langner K., Brumbaugh J. A. Detection of melanogenic proteins in cultured chick-embryo melanocytes. Differentiation. 1985;30(1):40–46. doi: 10.1111/j.1432-0436.1985.tb00511.x. [DOI] [PubMed] [Google Scholar]
  65. Ogawa M., Pharr P. N., Suda T. Stochastic nature of stem cell functions in culture. Prog Clin Biol Res. 1985;184:11–19. [PubMed] [Google Scholar]
  66. Oikawa A., Nakayasu M., Claunch C., Tchen T. T. Two types of melanogenesis in monolayer cultures of melanoma cells. Cell Differ. 1972 Aug;1(3):149–155. doi: 10.1016/0045-6039(72)90024-3. [DOI] [PubMed] [Google Scholar]
  67. Oikawa A., Nakayasu M. Quantitative measurement of melanin as tyrosine equivalents and as weight of purified melanin. Yale J Biol Med. 1973 Dec;46(5):500–507. [PMC free article] [PubMed] [Google Scholar]
  68. Panasci L. C., McQuillan A., Kaufman M. Biological activity, binding, and metabolic fate of Ac-[Nle4, D-Phe7]alpha-MSH4-11NH2 with the F1 variant of B16 melanoma cells. J Cell Physiol. 1987 Jul;132(1):97–103. doi: 10.1002/jcp.1041320113. [DOI] [PubMed] [Google Scholar]
  69. Pawelek J. M., Lerner A. B. 5,6-Dihydroxyindole is a melanin precursor showing potent cytotoxicity. Nature. 1978 Dec 7;276(5688):626–628. doi: 10.1038/276627a0. [DOI] [PubMed] [Google Scholar]
  70. Pawelek J., Emanuel J., Kahn R., Murray M., Fleischmann R. Interactions between insulin and the cyclic AMP system of Cloudman S91 mouse melanoma cells. J Cell Biochem. 1983;21(4):289–297. doi: 10.1002/jcb.240210405. [DOI] [PubMed] [Google Scholar]
  71. Pawelek J., Halaban R., Christie G. Melanoma cells which require cyclic AMP for growth. Nature. 1975 Dec 11;258(5535):539–540. doi: 10.1038/258539a0. [DOI] [PubMed] [Google Scholar]
  72. Pawelek J., Wong G., Sansone M., Morowitz J. Molecular biology of pigment cells. Molecular controls in mammalian pigmentation. Yale J Biol Med. 1973 Dec;46(5):430–443. [PMC free article] [PubMed] [Google Scholar]
  73. Pomerantz S. H. The tyrosine hydroxylase activity of mammalian tyrosinase. J Biol Chem. 1966 Jan 10;241(1):161–168. [PubMed] [Google Scholar]
  74. Potten C. S., Schofield R., Lajtha L. G. A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Biochim Biophys Acta. 1979 Aug 10;560(2):281–299. doi: 10.1016/0304-419x(79)90022-2. [DOI] [PubMed] [Google Scholar]
  75. Preston S. F., Volpi M., Pearson C. M., Berlin R. D. Regulation of cell shape in the Cloudman melanoma cell line. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5247–5251. doi: 10.1073/pnas.84.15.5247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Prota G. Recent advances in the chemistry of melanogenesis in mammals. J Invest Dermatol. 1980 Jul;75(1):122–127. doi: 10.1111/1523-1747.ep12521344. [DOI] [PubMed] [Google Scholar]
  77. Rheinwald J. G., Beckett M. A. Defective terminal differentiation in culture as a consistent and selectable character of malignant human keratinocytes. Cell. 1980 Nov;22(2 Pt 2):629–632. doi: 10.1016/0092-8674(80)90373-6. [DOI] [PubMed] [Google Scholar]
  78. STARICCO R. G. Amelanotic melanocytes in the outer sheath of the human hair follicle and their role in the repigmentation of regenerated epidermis. Ann N Y Acad Sci. 1963 Feb 15;100:239–255. doi: 10.1111/j.1749-6632.1963.tb57123.x. [DOI] [PubMed] [Google Scholar]
  79. Saeki H., Oikawa A. Effects of pH and type of sugar in the medium on tyrosinase activity in cultured melanoma cells. J Cell Physiol. 1978 Feb;94(2):139–145. doi: 10.1002/jcp.1040940203. [DOI] [PubMed] [Google Scholar]
  80. Saeki H., Oikawa A. Stimulation of tyrosinase activity of cultured melanoma cells by lysosomotropic agents. J Cell Physiol. 1983 Jul;116(1):93–97. doi: 10.1002/jcp.1041160114. [DOI] [PubMed] [Google Scholar]
  81. Sato C., Ito S., Takeuchi T. Establishment of a mouse melanocyte clone which synthesizes both eumelanin and pheomelanin. Cell Struct Funct. 1985 Dec;10(4):421–425. doi: 10.1247/csf.10.421. [DOI] [PubMed] [Google Scholar]
  82. Scott R. E., Hoerl B. J., Wille J. J., Jr, Florine D. L., Krawisz B. R., Yun K. Coupling of proadipocyte growth arrest and differentiation. II. A cell cycle model for the physiological control of cell proliferation. J Cell Biol. 1982 Aug;94(2):400–405. doi: 10.1083/jcb.94.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Shibahara S., Tomita Y., Sakakura T., Nager C., Chaudhuri B., Müller R. Cloning and expression of cDNA encoding mouse tyrosinase. Nucleic Acids Res. 1986 Mar 25;14(6):2413–2427. doi: 10.1093/nar/14.6.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Shields R., Smith J. A. Cells regulate their proliferation through alterations in transition probability. J Cell Physiol. 1977 Jun;91(3):345–355. doi: 10.1002/jcp.1040910304. [DOI] [PubMed] [Google Scholar]
  85. Silagi S. Control of pigment production in mouse melanoma cells in vitro. Evocation and maintenance. J Cell Biol. 1969 Nov;43(2):263–274. doi: 10.1083/jcb.43.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Smith J. A., Martin L. Do cells cycle? Proc Natl Acad Sci U S A. 1973 Apr;70(4):1263–1267. doi: 10.1073/pnas.70.4.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Steinberg M. L., Whittaker J. R. Stimulation of melanotic expression in a melanoma cell line by theophylline. J Cell Physiol. 1976 Mar;87(3):265–275. doi: 10.1002/jcp.1040870302. [DOI] [PubMed] [Google Scholar]
  88. Strome S., Wood W. B. Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell. 1983 Nov;35(1):15–25. doi: 10.1016/0092-8674(83)90203-9. [DOI] [PubMed] [Google Scholar]
  89. Sunkara P. S., Chang C. C., Prakash N. J., Lachmann P. J. Effect of inhibition of polyamine biosynthesis by DL-alpha-difluoromethylornithine on the growth and melanogenesis of B16 melanoma in vitro and in vivo. Cancer Res. 1985 Sep;45(9):4067–4070. [PubMed] [Google Scholar]
  90. TILL J. E., MCCULLOCH E. A., SIMINOVITCH L. A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS. Proc Natl Acad Sci U S A. 1964 Jan;51:29–36. doi: 10.1073/pnas.51.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Tarella C., Ferrero D., Gallo E., Pagliardi G. L., Ruscetti F. W. Induction of differentiation of HL-60 cells by dimethyl sulfoxide: evidence for a stochastic model not linked to the cell division cycle. Cancer Res. 1982 Feb;42(2):445–449. [PubMed] [Google Scholar]
  92. Thomson T. M., Mattes M. J., Roux L., Old L. J., Lloyd K. O. Pigmentation-associated glycoprotein of human melanomas and melanocytes: definition with a mouse monoclonal antibody. J Invest Dermatol. 1985 Aug;85(2):169–174. doi: 10.1111/1523-1747.ep12276608. [DOI] [PubMed] [Google Scholar]
  93. Varga J. M., Dipasquale A., Pawelek J., McGuire J. S., Lerner A. B. Regulation of melanocyte stimulating hormone action at the receptor level: discontinuous binding of hormone to synchronized mouse melanoma cells during the cell cycle. Proc Natl Acad Sci U S A. 1974 May;71(5):1590–1593. doi: 10.1073/pnas.71.5.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Wade D. R., Burkart M. E. The role of adenosine 3',5'-cyclic monophosphate in the density-dependent regulation of growth and tyrosinase activity of B-16 melanoma cells. J Cell Physiol. 1978 Mar;94(3):265–273. doi: 10.1002/jcp.1040940304. [DOI] [PubMed] [Google Scholar]
  95. Werkmeister J. A., Triglia T., Mackay I. R., Dowling J. P., Varigos G. A., Morstyn G., Burns G. F. Fluctuations in the expression of a glycolipid antigen associated with differentiation of melanoma cells monitored by a monoclonal antibody, Leo Mel 3. Cancer Res. 1987 Jan 1;47(1):225–230. [PubMed] [Google Scholar]
  96. White R., Hu F., Roman N. A. False dopa reaction in studies of mammalian tyrosinase: some characteristics and precautions. Stain Technol. 1983 Jan;58(1):13–19. doi: 10.3109/10520298309066744. [DOI] [PubMed] [Google Scholar]
  97. Wilcox M., Mitchison G. J., Smith R. J. Pattern formation in the blue-green alga Anabaena. II. Controlled proheterocyst regression. J Cell Sci. 1973 Nov;13(3):637–649. doi: 10.1242/jcs.13.3.637. [DOI] [PubMed] [Google Scholar]
  98. Wong G., Pawelek J. Control of phenotypic expression of cultured melanoma cells by melanocyte stimulating hormones. Nat New Biol. 1973 Feb 14;241(111):213–215. doi: 10.1038/newbio241213a0. [DOI] [PubMed] [Google Scholar]
  99. Wong G., Pawelek J., Sansone M., Morowitz J. Response of mouse melanoma cells to melanocyte stimulating hormone. Nature. 1974 Mar 22;248(446):351–354. doi: 10.1038/248351a0. [DOI] [PubMed] [Google Scholar]
  100. Wylie C. C., Snape A., Heasman J., Smith J. C. Vegetal pole cells and commitment to form endoderm in Xenopus laevis. Dev Biol. 1987 Feb;119(2):496–502. doi: 10.1016/0012-1606(87)90052-2. [DOI] [PubMed] [Google Scholar]
  101. Yasamura Y., Tashjian A. H., Jr, Sato G. H. Establishment of four functional, clonal strains of animal cells in culture. Science. 1966 Dec 2;154(3753):1186–1189. doi: 10.1126/science.154.3753.1186. [DOI] [PubMed] [Google Scholar]
  102. Ziomek C. A., Johnson M. H., Handyside A. H. The developmental potential of mouse 16-cell blastomeres. J Exp Zool. 1982 Jul 1;221(3):345–355. doi: 10.1002/jez.1402210310. [DOI] [PubMed] [Google Scholar]
  103. de Graan P. N., Brussaard A. B., Gamboni G., Girard J., Eberle A. N. alpha-MSH-induced changes in protein phosphorylation of Cloudman S91 mouse melanoma cells. Mol Cell Endocrinol. 1987 May;51(1-2):87–93. doi: 10.1016/0303-7207(87)90122-5. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES