Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1990 Mar;84:31–34. doi: 10.1289/ehp.908431

Effects of changes in calmodulin levels on cell proliferation.

C D Rasmusen 1, A R Means 1
PMCID: PMC1567650  PMID: 2190816

Abstract

Calmodulin (CaM) is one of several proteins regulated in a cell cycle-dependent manner. CaM is synthesized at the G1/S boundary and has been implicated in the regulation of cell cycle progression. To elucidate the role of calmodulin in cell cycle control, clonal mouse C127 cell lines transformed with one of four different bovine papilloma virus (BPV)-based vectors were studied. These vectors express a) a chicken CaM gene regulated by its own promoter (CM cells), b) the chicken CaM gene regulated by the inducible human metallothionein-IIa promoter (MCM cells), c) CaM antisense RNA using the Zn2+ inducible mouse metallothionein-I (mMT-I) promoter (AS cells), or d) a rat parvalbumin gene using the chicken CaM promoter (PV cells). C127 cells transformed by BPV-1 alone (BPV cells) are used as a control in each case. Previous studies showed that a 4-fold increase in CaM levels in CM cells shortened the cell cycle by reducing the length of the G1 period. Expression of parvalbumin in PV cells has no effect on cell cycle length, suggesting that increased CAM, and not simply increased Ca2(+)-binding protein, accelerates proliferation. Zn2(+)-induced expression of the chicken CaM gene in MCM cells increased the rate of proliferation, while Zn2(+)-induced expression of high levels of CaM anti-sense RNA stops proliferation at Zn2+ levels that do not affect the growth of BPV cells. In CM cells increased CaM affects cell cycle-dependent level of mRNAs for tubulin, vimentin, and c-myc relative to the levels in BPV cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chafouleas J. G., Lagacé L., Bolton W. E., Boyd A. E., 3rd, Means A. R. Changes in calmodulin and its mRNA accompany reentry of quiescent (G0) cells into the cell cycle. Cell. 1984 Jan;36(1):73–81. doi: 10.1016/0092-8674(84)90075-8. [DOI] [PubMed] [Google Scholar]
  2. Chafouleas J. G., Pardue R. L., Brinkley B. R., Dedman J. R., Means A. R. Regulation of intracellular levels of calmodulin and tubulin in normal and transformed cells. Proc Natl Acad Sci U S A. 1981 Feb;78(2):996–1000. doi: 10.1073/pnas.78.2.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connor C. G., Moore P. B., Brady R. C., Horn J. P., Arlinghaus R. B., Dedman J. R. The role of calmodulin in cell transformation. Biochem Biophys Res Commun. 1983 Apr 29;112(2):647–654. doi: 10.1016/0006-291x(83)91512-7. [DOI] [PubMed] [Google Scholar]
  4. Davis T. N., Urdea M. S., Masiarz F. R., Thorner J. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell. 1986 Nov 7;47(3):423–431. doi: 10.1016/0092-8674(86)90599-4. [DOI] [PubMed] [Google Scholar]
  5. Dedman J. R., Welsh M. J., Means A. R. Ca2+-dependent regulator. Production and characterization of a monospecific antibody. J Biol Chem. 1978 Oct 25;253(20):7515–7521. [PubMed] [Google Scholar]
  6. Epstein P., Means A. R., Berchtold M. W. Isolation of a rat parvalbumin gene and full length cDNA. J Biol Chem. 1986 May 5;261(13):5886–5891. [PubMed] [Google Scholar]
  7. Ide T., Ninomiya-Tsuji J., Ferrari S., Philiponis V., Baserga R. Expression of growth-regulated genes in tsJT60 cells, a temperature-sensitive mutant of the cell cycle. Biochemistry. 1986 Nov 4;25(22):7041–7046. doi: 10.1021/bi00370a043. [DOI] [PubMed] [Google Scholar]
  8. Karin M., Richards R. I. Human metallothionein genes--primary structure of the metallothionein-II gene and a related processed gene. Nature. 1982 Oct 28;299(5886):797–802. doi: 10.1038/299797a0. [DOI] [PubMed] [Google Scholar]
  9. LaPorte D. C., Gidwitz S., Weber M. J., Storm D. R. Relationship between changes in the calcium dependent regulatory protein and adenylate cyclase during viral transformation. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1169–1177. doi: 10.1016/0006-291x(79)90240-7. [DOI] [PubMed] [Google Scholar]
  10. Law M. F., Byrne J. C., Howley P. M. A stable bovine papillomavirus hybrid plasmid that expresses a dominant selective trait. Mol Cell Biol. 1983 Nov;3(11):2110–2115. doi: 10.1128/mcb.3.11.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marcum J. M., Dedman J. R., Brinkley B. R., Means A. R. Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3771–3775. doi: 10.1073/pnas.75.8.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Means A. R., Tash J. S., Chafouleas J. G. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev. 1982 Jan;62(1):1–39. doi: 10.1152/physrev.1982.62.1.1. [DOI] [PubMed] [Google Scholar]
  13. Nojima H., Kishi K., Sokabe H. Multiple calmodulin mRNA species are derived from two distinct genes. Mol Cell Biol. 1987 May;7(5):1873–1880. doi: 10.1128/mcb.7.5.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Plumb M., Stein J., Stein G. Coordinate regulation of multiple histone mRNAs during the cell cycle in HeLa cells. Nucleic Acids Res. 1983 Apr 25;11(8):2391–2410. doi: 10.1093/nar/11.8.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Putkey J. A., Ts'ui K. F., Tanaka T., Lagacé L., Stein J. P., Lai E. C., Means A. R. Chicken calmodulin genes. A species comparison of cDNA sequences and isolation of a genomic clone. J Biol Chem. 1983 Oct 10;258(19):11864–11870. [PubMed] [Google Scholar]
  16. Rasmussen C. D., Means A. R. Calmodulin is involved in regulation of cell proliferation. EMBO J. 1987 Dec 20;6(13):3961–3968. doi: 10.1002/j.1460-2075.1987.tb02738.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rasmussen C. D., Simmen R. C., MacDougall E. A., Means A. R. Methods for analyzing bovine papilloma virus-based calmodulin expression vectors. Methods Enzymol. 1987;139:642–654. doi: 10.1016/0076-6879(87)39117-7. [DOI] [PubMed] [Google Scholar]
  18. Sarver N., Gruss P., Law M. F., Khoury G., Howley P. M. Bovine papilloma virus deoxyribonucleic acid: a novel eucaryotic cloning vector. Mol Cell Biol. 1981 Jun;1(6):486–496. doi: 10.1128/mcb.1.6.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sasaki Y., Hidaka H. Calmodulin and cell proliferation. Biochem Biophys Res Commun. 1982 Jan 29;104(2):451–456. doi: 10.1016/0006-291x(82)90658-1. [DOI] [PubMed] [Google Scholar]
  20. TERASIMA T., TOLMACH L. J. Changes in x-ray sensitivity of HeLa cells during the division cycle. Nature. 1961 Jun 24;190:1210–1211. doi: 10.1038/1901210a0. [DOI] [PubMed] [Google Scholar]
  21. Takeda T., Yamamoto M. Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3580–3584. doi: 10.1073/pnas.84.11.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tanaka T., Ohmura T., Hidaka H. Hydrophobic interaction of the Ca2+-calmodulin complex with calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol Pharmacol. 1982 Sep;22(2):403–407. [PubMed] [Google Scholar]
  23. Tobey R. A., Seagrave J. Inducibility of metallothionein throughout the cell cycle. Mol Cell Biol. 1984 Oct;4(10):2243–2245. doi: 10.1128/mcb.4.10.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Veigl M. L., Vanaman T. C., Sedwick W. D. Calcium and calmodulin in cell growth and transformation. Biochim Biophys Acta. 1984;738(1-2):21–48. doi: 10.1016/0304-419x(84)90018-0. [DOI] [PubMed] [Google Scholar]
  25. Watterson D. M., Van Eldik L. J., Smith R. E., Vanaman T. C. Calcium-dependent regulatory protein of cyclic nucleotide metabolism in normal and transformed chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2711–2715. doi: 10.1073/pnas.73.8.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yagle M. K., Palmiter R. D. Coordinate regulation of mouse metallothionein I and II genes by heavy metals and glucocorticoids. Mol Cell Biol. 1985 Feb;5(2):291–294. doi: 10.1128/mcb.5.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zendegui J. G., Zielinski R. E., Watterson D. M., Van Eldik L. J. Biosynthesis of calmodulin in normal and virus-transformed chicken embryo fibroblasts. Mol Cell Biol. 1984 May;4(5):883–889. doi: 10.1128/mcb.4.5.883. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES