Abstract
Recent advances in research on low-level lead poisoning point to the need to increase efforts to prevent exposure. Current biomedical consensus accepts that blood lead levels as low as 5 to 15 mcg/dL are risky to fetuses, young children, and adults. Lead at low dose is associated with increased blood pressure in adults, and chronic exposure has been associated in cohort studies with kidney disease and cancer. Data on lead toxicokinetics also points to the hazards of low-level, chronic exposure, since the lead that is accumulated over time in bone can be released at a relatively rapid rate during pregnancy and menopause. Sources that contribute to current lead exposure of the general population include unabated lead-based paint and contaminated soils, as well as lower level but pervasive sources in drinking water, food, and consumer products.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Annest J. L., Pirkle J. L., Makuc D., Neese J. W., Bayse D. D., Kovar M. G. Chronological trend in blood lead levels between 1976 and 1980. N Engl J Med. 1983 Jun 9;308(23):1373–1377. doi: 10.1056/NEJM198306093082301. [DOI] [PubMed] [Google Scholar]
- Aufderheide A. C., Neiman F. D., Wittmers L. E., Jr, Rapp G. Lead in bone II: skeletal-lead content as an indicator of lifetime lead ingestion and the social correlates in an archaeological population. Am J Phys Anthropol. 1981 Jul;55(3):285–291. doi: 10.1002/ajpa.1330550304. [DOI] [PubMed] [Google Scholar]
- Baker E. L., Jr, Landrigan P. J., Barbour A. G., Cox D. H., Folland D. S., Ligo R. N., Throckmorton J. Occupational lead poisoning in the United States: clinical and biochemical findings related to blood lead levels. Br J Ind Med. 1979 Nov;36(4):314–322. doi: 10.1136/oem.36.4.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornschein R. L., Succop P., Dietrich K. N., Clark C. S., Que Hee S., Hammond P. B. The influence of social and environmental factors on dust lead, hand lead, and blood lead levels in young children. Environ Res. 1985 Oct;38(1):108–118. doi: 10.1016/0013-9351(85)90076-3. [DOI] [PubMed] [Google Scholar]
- Chisolm J. J., Jr, Mellits E. D., Quaskey S. A. The relationship between the level of lead absorption in children and the age, type, and condition of housing. Environ Res. 1985 Oct;38(1):31–45. doi: 10.1016/0013-9351(85)90070-2. [DOI] [PubMed] [Google Scholar]
- Christoffersson J. O., Ahlgren L., Schütz A., Skerfving S., Mattsson S. Decrease of skeletal lead levels in man after end of occupational exposure. Arch Environ Health. 1986 Sep-Oct;41(5):312–318. doi: 10.1080/00039896.1986.9936703. [DOI] [PubMed] [Google Scholar]
- Cooper W. C., Wong O., Kheifets L. Mortality among employees of lead battery plants and lead-producing plants, 1947-1980. Scand J Work Environ Health. 1985 Oct;11(5):331–345. doi: 10.5271/sjweh.2215. [DOI] [PubMed] [Google Scholar]
- Davis J. M., Svendsgaard D. J. Lead and child development. Nature. 1987 Sep 24;329(6137):297–300. doi: 10.1038/329297a0. [DOI] [PubMed] [Google Scholar]
- Denison R. A., Silbergeld E. K. Risks of municipal solid waste incineration: an environmental perspective. Risk Anal. 1988 Sep;8(3):343–355. doi: 10.1111/j.1539-6924.1988.tb00497.x. [DOI] [PubMed] [Google Scholar]
- Fowler B. A. Mechanisms of metal-induced renal cell injury: roles of high-affinity metal-binding proteins. Contrib Nephrol. 1988;64:83–92. doi: 10.1159/000415730. [DOI] [PubMed] [Google Scholar]
- Gerhardsson L., Lundström N. G., Nordberg G., Wall S. Mortality and lead exposure: a retrospective cohort study of Swedish smelter workers. Br J Ind Med. 1986 Oct;43(10):707–712. doi: 10.1136/oem.43.10.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harlan W. R. The relationship of blood lead levels to blood pressure in the U.S. population. Environ Health Perspect. 1988 Jun;78:9–13. doi: 10.1289/ehp.88789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landrigan P. J., Halper L. A., Silbergeld E. K. Toxic air pollution across a state line: implications for the siting of resource recovery facilities. J Public Health Policy. 1989 Autumn;10(3):309–323. [PubMed] [Google Scholar]
- Marcus A. H. Multicompartment kinetic models for lead. I. Bone diffusion models for long-term retention. Environ Res. 1985 Apr;36(2):441–458. doi: 10.1016/0013-9351(85)90037-4. [DOI] [PubMed] [Google Scholar]
- McMichael A. J., Vimpani G. V., Robertson E. F., Baghurst P. A., Clark P. D. The Port Pirie cohort study: maternal blood lead and pregnancy outcome. J Epidemiol Community Health. 1986 Mar;40(1):18–25. doi: 10.1136/jech.40.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman H. L., Landrigan P. J. The health effects of low level exposure to lead. Annu Rev Public Health. 1981;2:277–298. doi: 10.1146/annurev.pu.02.050181.001425. [DOI] [PubMed] [Google Scholar]
- Neuberger J. S., Hollowell J. G. Lung cancer excess in an abandoned lead-zinc mining and smelting area. Sci Total Environ. 1982 Nov;25(3):287–294. doi: 10.1016/0048-9697(82)90021-3. [DOI] [PubMed] [Google Scholar]
- Piomelli S., Davidow B., Guinee V. F., Young P., Gay G. The FEP (free erythrocyte porphyrins) test: a screening micromethod for lead poisoning. Pediatrics. 1973 Feb;51(2):254–259. [PubMed] [Google Scholar]
- Rabinowitz M. B., Wetherill G. W., Kopple J. D. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976 Aug;58(2):260–270. doi: 10.1172/JCI108467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinowitz M., Leviton A., Needleman H. Lead in milk and infant blood: a dose-response model. Arch Environ Health. 1985 Sep-Oct;40(5):283–286. doi: 10.1080/00039896.1985.10545933. [DOI] [PubMed] [Google Scholar]
- Sayre J. W., Charney E., Vostal J., Pless I. B. House and hand dust as a potential source of childhood lead exposure. Am J Dis Child. 1974 Feb;127(2):167–170. doi: 10.1001/archpedi.1974.02110210017002. [DOI] [PubMed] [Google Scholar]
- Selevan S. G., Landrigan P. J., Stern F. B., Jones J. H. Mortality of lead smelter workers. Am J Epidemiol. 1985 Oct;122(4):673–683. doi: 10.1093/oxfordjournals.aje.a114146. [DOI] [PubMed] [Google Scholar]
- Silbergeld E. K., Adler H. S., Costa J. L. Subcellular localization of lead in synaptosomes. Res Commun Chem Pathol Pharmacol. 1977 Aug;17(4):715–725. [PubMed] [Google Scholar]
- Silbergeld E. K. Maternally mediated exposure of the fetus: in utero exposure to lead and other toxins. Neurotoxicology. 1986 Summer;7(2):557–568. [PubMed] [Google Scholar]
- Silbergeld E. K., Schwartz J., Mahaffey K. Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environ Res. 1988 Oct;47(1):79–94. doi: 10.1016/s0013-9351(88)80023-9. [DOI] [PubMed] [Google Scholar]
- Sternowsky H. J., Wessolowski R. Lead and cadmium in breast milk. Higher levels in urban vs rural mothers during the first 3 months of lactation. Arch Toxicol. 1985 Apr;57(1):41–45. doi: 10.1007/BF00286573. [DOI] [PubMed] [Google Scholar]
- Van de Vyver F. L., D'Haese P. C., Visser W. J., Elseviers M. M., Knippenberg L. J., Lamberts L. V., Wedeen R. P., De Broe M. E. Bone lead in dialysis patients. Kidney Int. 1988 Feb;33(2):601–607. doi: 10.1038/ki.1988.39. [DOI] [PubMed] [Google Scholar]
- Wittmers L. E., Jr, Aufderheide A. C., Wallgren J., Rapp G., Jr, Alich A. Lead in bone. IV. Distribution of lead in the human skeleton. Arch Environ Health. 1988 Nov-Dec;43(6):381–391. doi: 10.1080/00039896.1988.9935855. [DOI] [PubMed] [Google Scholar]
- Wolff M. S. Occupationally derived chemicals in breast milk. Am J Ind Med. 1983;4(1-2):259–281. [PubMed] [Google Scholar]
- Yankel A. J., von Lindern I. H., Walter S. D. The Silver Valley lead study: the relationship between childhood blood lead levels and environmental exposure. J Air Pollut Control Assoc. 1977 Aug;27(8):763–767. doi: 10.1080/00022470.1977.10470488. [DOI] [PubMed] [Google Scholar]
