Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1991 Jun;93:73–77. doi: 10.1289/ehp.919373

Genetic analysis of the K-rev-1 transformation-suppressor gene.

H Kitayama 1, T Matsuzaki 1, Y Sugimoto 1, Y Ikawa 1, M Noda 1
PMCID: PMC1568041  PMID: 1773804

Abstract

Flat revertants with reduced malignancy in vivo can be isolated from Kirsten sarcoma virus-transformed NIH 3T3 cells (DT line) following transfection with a normal human fibroblast cDNA expression library. We have recovered from one such revertant a 1.8-kb cDNA clone, K-rev-1, that exhibits an activity of inducing flat revertants at certain frequencies (2-5% of total transfectants) when transfected into DT cells. The K-rev-1 cDNA has the capacity to encode a protein with a calculated molecular weight of 21,000, having strong structural similarity to ras proteins (approximately 50% homology), especially in their guanosine triphosphate/guanosine diphosphate-binding, effector-binding, and membrane-attachment domains. Toward understanding the mechanism of action of K-rev-1 protein, we constructed a series of point mutants of K-rev-1 cDNA and tested their biological activities. Substitutions of the amino acid residues in the putative guanine nucleotide-binding regions (Asp17 and Asn116), in the putative effector-binding domain (residue 38), at the putative acylation site (Cys181), and at the unique Thr61 all decreased the transformation-suppressor activity. On the other hand, substitutions including Gly12 to Val12, Ala59 to Thr59, and Gln63 to Glu63 were found to significantly increase the transformation-suppressor activity of K-rev-1. These findings are consistent with the idea that K-rev-1 protein is regulated like many other G-proteins by guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative growth-regulatory signals.

Full text

PDF
73

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbacid M. ras genes. Annu Rev Biochem. 1987;56:779–827. doi: 10.1146/annurev.bi.56.070187.004023. [DOI] [PubMed] [Google Scholar]
  2. Chang E. H., Furth M. E., Scolnick E. M., Lowy D. R. Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature. 1982 Jun 10;297(5866):479–483. doi: 10.1038/297479a0. [DOI] [PubMed] [Google Scholar]
  3. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Der C. J., Finkel T., Cooper G. M. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell. 1986 Jan 17;44(1):167–176. doi: 10.1016/0092-8674(86)90495-2. [DOI] [PubMed] [Google Scholar]
  5. Kikuchi A., Sasaki T., Araki S., Hata Y., Takai Y. Purification and characterization from bovine brain cytosol of two GTPase-activating proteins specific for smg p21, a GTP-binding protein having the same effector domain as c-ras p21s. J Biol Chem. 1989 Jun 5;264(16):9133–9136. [PubMed] [Google Scholar]
  6. Kitayama H., Matsuzaki T., Ikawa Y., Noda M. A domain responsible for the transformation suppressor activity in Krev-1 protein. Jpn J Cancer Res. 1990 May;81(5):445–448. doi: 10.1111/j.1349-7006.1990.tb02589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Molloy C. J., Bottaro D. P., Fleming T. P., Marshall M. S., Gibbs J. B., Aaronson S. A. PDGF induction of tyrosine phosphorylation of GTPase activating protein. Nature. 1989 Dec 7;342(6250):711–714. doi: 10.1038/342711a0. [DOI] [PubMed] [Google Scholar]
  8. Noda M., Kitayama H., Matsuzaki T., Sugimoto Y., Okayama H., Bassin R. H., Ikawa Y. Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proc Natl Acad Sci U S A. 1989 Jan;86(1):162–166. doi: 10.1073/pnas.86.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Noda M., Selinger Z., Scolnick E. M., Bassin R. H. Flat revertants isolated from Kirsten sarcoma virus-transformed cells are resistant to the action of specific oncogenes. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5602–5606. doi: 10.1073/pnas.80.18.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pulciani S., Santos E., Long L. K., Sorrentino V., Barbacid M. ras gene Amplification and malignant transformation. Mol Cell Biol. 1985 Oct;5(10):2836–2841. doi: 10.1128/mcb.5.10.2836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Zhang K., Noda M., Vass W. C., Papageorge A. G., Lowy D. R. Identification of small clusters of divergent amino acids that mediate the opposing effects of ras and Krev-1. Science. 1990 Jul 13;249(4965):162–165. doi: 10.1126/science.2115210. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES