Abstract
Specific biochemical changes occurring during hepatocarcinogenesis have been sought by many investigators. The development of multistage models for hepatocarcinogenesis in the rodent has renewed interest in such marker alterations in preneoplastic as well as neoplastic hepatocytes. Preneoplastic altered hepatic foci (AHF) exhibit specific histomorphologic changes as viewed with tinctorial stains and show a variety of biochemical changes as evidenced by enzyme and immunohistochemistry and by other histochemical markers. During the reversible stage of promotion when AHF are scored by multiple markers, the distribution of markers within these lesions differs with the use of different promoting agents. One interpretation of this finding is that each promoting agent stimulates the replication of a set of initiated cells exhibiting the phenotypic characteristics of a specific programmed phenotype. The same markers score AHF during the stage of progression, but many AHF in this stage are phenotypically heterogeneous, exhibiting in tissue sections a "focus-in-focus" pattern of marker alteration. These latter changes can be correlated with the appearance of karyotypic alterations in preneoplastic hepatocytes. On the other hand, it has been difficult to demonstrate the activation, either mutational or transcriptional, of proto-oncogenes until this stage of progression in rat hepatocarcinogenesis. Thus, a study of biochemical and molecular markers during the stages of hepatocarcinogenesis may lead to a better understanding of potential mechanisms involved in the development of neoplasia through the stages of initiation, promotion, and progression.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bannasch P., Hesse J., Angerer H. Hepatocelluläre glykogenose und die Genese sogenannter hyperplastischer Knoten in der Thioacetamid-vergifteten Rattenleber. Virchows Arch B Cell Pathol. 1974;17(1):29–50. [PubMed] [Google Scholar]
- Bannasch P. Preneoplastic lesions as end points in carcinogenicity testing. I. Hepatic preneoplasia. Carcinogenesis. 1986 May;7(5):689–695. doi: 10.1093/carcin/7.5.689. [DOI] [PubMed] [Google Scholar]
- Beer D. G., Schwarz M., Sawada N., Pitot H. C. Expression of H-ras and c-myc protooncogenes in isolated gamma-glutamyl transpeptidase-positive rat hepatocytes and in hepatocellular carcinomas induced by diethylnitrosamine. Cancer Res. 1986 May;46(5):2435–2441. [PubMed] [Google Scholar]
- Buchmann A., Kuhlmann W., Schwarz M., Kunz W., Wolf C. R., Moll E., Friedberg T., Oesch F. Regulation and expression of four cytochrome P-450 isoenzymes, NADPH-cytochrome P-450 reductase, the glutathione transferases B and C and microsomal epoxide hydrolase in preneoplastic and neoplastic lesions in rat liver. Carcinogenesis. 1985 Apr;6(4):513–521. doi: 10.1093/carcin/6.4.513. [DOI] [PubMed] [Google Scholar]
- Campbell H. A., Xu Y. D., Hanigan M. H., Pitot H. C. Application of quantitative stereology to the evaluation of phenotypically heterogeneous enzyme-altered foci in the rat liver. J Natl Cancer Inst. 1986 Apr;76(4):751–767. doi: 10.1093/jnci/76.4.751. [DOI] [PubMed] [Google Scholar]
- Cote G. J., Lastra B. A., Cook J. R., Huang D. P., Chiu J. F. Oncogene expression in rat hepatomas and during hepatocarcinogenesis. Cancer Lett. 1985 Mar;26(2):121–127. doi: 10.1016/0304-3835(85)90017-5. [DOI] [PubMed] [Google Scholar]
- Edmondson H. A., Reynolds T. B., Henderson B., Benton B. Regression of liver cell adenomas associated with oral contraceptives. Ann Intern Med. 1977 Feb;86(2):180–182. doi: 10.7326/0003-4819-86-2-180. [DOI] [PubMed] [Google Scholar]
- Embleton M. J., Butler P. C. Reactivity of monoclonal antibodies to oncoproteins with normal rat liver, carcinogen-induced tumours, and premalignant liver lesions. Br J Cancer. 1988 Jan;57(1):48–53. doi: 10.1038/bjc.1988.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Embleton M. J., James H. S., Haynes A. J., Butler P. C. Heterogeneity of hepatocyte antigen expression in rat liver carcinogenesis: concordance between neoplastic nodules and tumours. Br J Exp Pathol. 1989 Dec;70(6):647–657. [PMC free article] [PubMed] [Google Scholar]
- Enomoto K., Farber E. Kinetics of phenotypic maturation of remodeling of hyperplastic nodules during liver carcinogenesis. Cancer Res. 1982 Jun;42(6):2330–2335. [PubMed] [Google Scholar]
- Farber E. Chemical carcinogenesis: a biologic perspective. Am J Pathol. 1982 Feb;106(2):271–296. [PMC free article] [PubMed] [Google Scholar]
- Fiala S., Fiala A. E., Dixon B. -Glutamyl transpeptidase in transplantable, chemically induced rat hepatomas and "spontaneous" mouse hepatomas. J Natl Cancer Inst. 1972 May;48(5):1393–1401. [PubMed] [Google Scholar]
- Friedrich-Freksa H., Papadopulu G., Gössner W. Histochemische Untersuchungen der Cancerogenese in der Rattenleber nach zeitlich begrenzter Verabfolgung von Diäthylnitrosamin. Z Krebsforsch. 1969;72(3):240–253. [PubMed] [Google Scholar]
- GOLDFARB S., ZAK F. G. Role of injury and hyperplasia in the induction of hepatocellular carcinoma. JAMA. 1961 Nov 18;178:729–731. doi: 10.1001/jama.1961.73040460007007b. [DOI] [PubMed] [Google Scholar]
- Galand P., Jacobovitz D., Alexandre K. Immunohistochemical detection of c-Ha-ras oncogene p21 product in pre-neoplastic and neoplastic lesions during hepatocarcinogenesis in rats. Int J Cancer. 1988 Jan 15;41(1):155–161. doi: 10.1002/ijc.2910410127. [DOI] [PubMed] [Google Scholar]
- Gil R., Callaghan R., Boix J., Pellin A., Llombart-Bosch A. Morphometric and cytophotometric nuclear analysis of altered hepatocyte foci induced by N-nitrosomorpholine (NNM) and aflatoxin B1 (AFB1) in liver of Wistar rats. Virchows Arch B Cell Pathol Incl Mol Pathol. 1988;54(6):341–349. doi: 10.1007/BF02899232. [DOI] [PubMed] [Google Scholar]
- Glauert H. P., Beer D., Rao M. S., Schwarz M., Xu Y. D., Goldsworthy T. L., Coloma J., Pitot H. C. Induction of altered hepatic foci in rats by the administration of hypolipidemic peroxisome proliferators alone or following a single dose of diethylnitrosamine. Cancer Res. 1986 Sep;46(9):4601–4606. [PubMed] [Google Scholar]
- Goldfarb S. A morphological and histochemical study of carcinogenesis of the liver in rats fed 3'-methyl-4-dimethylaminoazobenzene. Cancer Res. 1973 May;33(5):1119–1128. [PubMed] [Google Scholar]
- Goldsworthy T. L., Hanigan M. H., Pitot H. C. Models of hepatocarcinogenesis in the rat--contrasts and comparisons. Crit Rev Toxicol. 1986;17(1):61–89. doi: 10.3109/10408448609037071. [DOI] [PubMed] [Google Scholar]
- Harada T., Maronpot R. R., Morris R. W., Boorman G. A. Observations on altered hepatocellular foci in National Toxicology Program two-year carcinogenicity studies in rats. Toxicol Pathol. 1989;17(4 Pt 1):690–708. doi: 10.1177/0192623389017004114. [DOI] [PubMed] [Google Scholar]
- Harada T., Maronpot R. R., Morris R. W., Stitzel K. A., Boorman G. A. Morphological and stereological characterization of hepatic foci of cellular alteration in control Fischer 344 rats. Toxicol Pathol. 1989;17(4 Pt 1):579–593. doi: 10.1177/0192623389017004104. [DOI] [PubMed] [Google Scholar]
- Hendrich S., Glauert H. P., Pitot H. C. The phenotypic stability of altered hepatic foci: effects of withdrawal and subsequent readministration of phenobarbital. Carcinogenesis. 1986 Dec;7(12):2041–2045. doi: 10.1093/carcin/7.12.2041. [DOI] [PubMed] [Google Scholar]
- Hori S. H. Cytochemical studies on tumor cells. VII. Inductivity of glucose 6-phosphate-dehydrogenase in hepatic cells of rats fed azo dye. Gan. 1966 Feb;57(1):85–93. [PubMed] [Google Scholar]
- Kalengayi M. M., Ronchi G., Desmet V. J. Histochemistry of gamma-glutamyl transpeptidase in rat liver during aflatoxin B1-induced carcinogenesis. J Natl Cancer Inst. 1975 Sep;55(3):579–588. doi: 10.1093/jnci/55.3.579. [DOI] [PubMed] [Google Scholar]
- Kitagawa T. Histochemical analysis of hyperplastic lesions and hepatomas of the liver of rats fed 2-fluorenylacetamide. Gan. 1971 Jun;62(3):207–216. [PubMed] [Google Scholar]
- Klein G. Tumour suppressor genes. J Cell Sci Suppl. 1988;10:171–180. doi: 10.1242/jcs.1988.supplement_10.13. [DOI] [PubMed] [Google Scholar]
- Kociba R. J., Keyes D. G., Beyer J. E., Carreon R. M., Wade C. E., Dittenber D. A., Kalnins R. P., Frauson L. E., Park C. N., Barnard S. D. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Pharmacol. 1978 Nov;46(2):279–303. doi: 10.1016/0041-008x(78)90075-3. [DOI] [PubMed] [Google Scholar]
- Makino R., Hayashi K., Sato S., Sugimura T. Expressions of the c-Ha-ras and c-myc genes in rat liver tumors. Biochem Biophys Res Commun. 1984 Mar 30;119(3):1092–1102. doi: 10.1016/0006-291x(84)90887-8. [DOI] [PubMed] [Google Scholar]
- Maronpot R. R., Montgomery C. A., Jr, Boorman G. A., McConnell E. E. National Toxicology Program nomenclature for hepatoproliferative lesions of rats. Toxicol Pathol. 1986;14(2):263–273. doi: 10.1177/019262338601400217. [DOI] [PubMed] [Google Scholar]
- McCormick J. J., Maher V. M. Malignant transformation of mammalian cells in culture, including human cells. Environ Mol Mutagen. 1989;14 (Suppl 16):105–113. doi: 10.1002/em.2850140619. [DOI] [PubMed] [Google Scholar]
- Moore M. A., Hacker H. J., Bannasch P. Phenotypic instability in focal and nodular lesions induced in a short term system in the rat liver. Carcinogenesis. 1983;4(5):595–603. doi: 10.1093/carcin/4.5.595. [DOI] [PubMed] [Google Scholar]
- Neveu M. J., Hully J. R., Paul D. L., Pitot H. C. Reversible alteration in the expression of the gap junctional protein connexin 32 during tumor promotion in rat liver and its role during cell proliferation. Cancer Commun. 1990;2(1):21–31. doi: 10.3727/095535490820874731. [DOI] [PubMed] [Google Scholar]
- Ogawa K., Solt D. B., Farber E. Phenotypic diversity as an early property of putative preneoplastic hepatocyte populations in liver carcinogenesis. Cancer Res. 1980 Mar;40(3):725–733. [PubMed] [Google Scholar]
- Peraino C., Staffeldt E. F., Carnes B. A., Ludeman V. A., Blomquist J. A., Vesselinovitch S. D. Characterization of histochemically detectable altered hepatocyte foci and their relationship to hepatic tumorigenesis in rats treated once with diethylnitrosamine or benzo(a)pyrene within one day after birth. Cancer Res. 1984 Aug;44(8):3340–3347. [PubMed] [Google Scholar]
- Peraino C., Staffeldt E. F., Ludeman V. A. Early appearance of histochemically altered hepatocyte foci and liver tumors in female rats treated with carcinogens one day after birth. Carcinogenesis. 1981;2(5):463–465. doi: 10.1093/carcin/2.5.463. [DOI] [PubMed] [Google Scholar]
- Pitot H. C. Altered hepatic foci: their role in murine hepatocarcinogenesis. Annu Rev Pharmacol Toxicol. 1990;30:465–500. doi: 10.1146/annurev.pa.30.040190.002341. [DOI] [PubMed] [Google Scholar]
- Pitot H. C., Barsness L., Goldsworthy T., Kitagawa T. Biochemical characterisation of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine. Nature. 1978 Feb 2;271(5644):456–458. doi: 10.1038/271456a0. [DOI] [PubMed] [Google Scholar]
- Pitot H. C., Campbell H. A., Maronpot R., Bawa N., Rizvi T. A., Xu Y. H., Sargent L., Dragan Y., Pyron M. Critical parameters in the quantitation of the stages of initiation, promotion, and progression in one model of hepatocarcinogenesis in the rat. Toxicol Pathol. 1989;17(4 Pt 1):594–612. doi: 10.1177/0192623389017004105. [DOI] [PubMed] [Google Scholar]
- Pitot H. C., Goldsworthy T., Campbell H. A., Poland A. Quantitative evaluation of the promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin of hepatocarcinogenesis from diethylnitrosamine. Cancer Res. 1980 Oct;40(10):3616–3620. [PubMed] [Google Scholar]
- Pitot H. C., Sirica A. E. The stages of initiation and promotion in hepatocarcinogenesis. Biochim Biophys Acta. 1980 May 6;605(2):191–215. doi: 10.1016/0304-419x(80)90004-9. [DOI] [PubMed] [Google Scholar]
- Pretlow T. P., Grane R. W., Goehring P. L., Lapinsky A. S., Pretlow T. G., 2nd Examination of enzyme-altered foci with gamma-glutamyl transpeptidase, aldehyde dehydrogenase, glucose-6-phosphate dehydrogenase, and other markers in methacrylate-embedded liver. Lab Invest. 1987 Jan;56(1):96–100. [PubMed] [Google Scholar]
- Pugh T. D., Goldfarb S. Quantitative histochemical and autoradiographic studies of hepatocarcinogenesis in rats fed 2-acetylaminofluorene followed by phenobarbital. Cancer Res. 1978 Dec;38(12):4450–4457. [PubMed] [Google Scholar]
- Rao M. S., Tatematsu M., Subbarao V., Ito N., Reddy J. K. Analysis of peroxisome proliferator-induced preneoplastic and neoplastic lesions of rat liver for placental form of glutathione S-transferase and gamma-glutamyltranspeptidase. Cancer Res. 1986 Oct;46(10):5287–5290. [PubMed] [Google Scholar]
- Reuber M. D. Carcinomas of the liver in Osborne-Mendel rats ingesting DDT. Tumori. 1978 Nov-Dec;64(6):571–577. doi: 10.1177/030089167806400603. [DOI] [PubMed] [Google Scholar]
- Reuber M. D. Development of preneoplastic and neoplastic lesions of the liver in male rats given 0.025 percent N-2-fluorenyldiacetamide. J Natl Cancer Inst. 1965 Jun;34(6):697–723. [PubMed] [Google Scholar]
- Richmond R. E., Pereira M. A., Carter J. H., Carter H. W., Long R. E. Quantitative and qualitative immunohistochemical detection of myc and src oncogene proteins in normal, nodule, and neoplastic rat liver. J Histochem Cytochem. 1988 Feb;36(2):179–184. doi: 10.1177/36.2.3121722. [DOI] [PubMed] [Google Scholar]
- Roomi M. W., Ho R. K., Sarma D. S., Farber E. A common biochemical pattern in preneoplastic hepatocyte nodules generated in four different models in the rat. Cancer Res. 1985 Feb;45(2):564–571. [PubMed] [Google Scholar]
- Saeter G., Schwarze P. E., Nesland J. M., Juul N., Pettersen E. O., Seglen P. O. The polyploidizing growth pattern of normal rat liver is replaced by divisional, diploid growth in hepatocellular nodules and carcinomas. Carcinogenesis. 1988 Jun;9(6):939–945. doi: 10.1093/carcin/9.6.939. [DOI] [PubMed] [Google Scholar]
- Sarafoff M., Rabes H. M., Dörmer P. Correlations between ploidy and initiation probability determined by DNA cytophotometry in individual altered hepatic foci. Carcinogenesis. 1986 Jul;7(7):1191–1196. doi: 10.1093/carcin/7.7.1191. [DOI] [PubMed] [Google Scholar]
- Sargent L., Xu Y. H., Sattler G. L., Meisner L., Pitot H. C. Ploidy and karyotype of hepatocytes isolated from enzyme-altered foci in two different protocols of multistage hepatocarcinogenesis in the rat. Carcinogenesis. 1989 Feb;10(2):387–391. doi: 10.1093/carcin/10.2.387. [DOI] [PubMed] [Google Scholar]
- Sato K., Kitahara A., Satoh K., Ishikawa T., Tatematsu M., Ito N. The placental form of glutathione S-transferase as a new marker protein for preneoplasia in rat chemical hepatocarcinogenesis. Gan. 1984 Mar;75(3):199–202. [PubMed] [Google Scholar]
- Satoh K., Kitahara A., Soma Y., Inaba Y., Hatayama I., Sato K. Purification, induction, and distribution of placental glutathione transferase: a new marker enzyme for preneoplastic cells in the rat chemical hepatocarcinogenesis. Proc Natl Acad Sci U S A. 1985 Jun;82(12):3964–3968. doi: 10.1073/pnas.82.12.3964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherer E. Relationship among histochemically distinguishable early lesions in multistep-multistage hepatocarcinogenesis. Arch Toxicol Suppl. 1987;10:81–94. doi: 10.1007/978-3-642-71617-1_7. [DOI] [PubMed] [Google Scholar]
- Schulte-Hermann R., Timmermann-Trosiener I., Schuppler J. Promotion of spontaneous preneoplastic cells in rat liver as a possible explanation of tumor production by nonmutagenic compounds. Cancer Res. 1983 Feb;43(2):839–844. [PubMed] [Google Scholar]
- Sirica A. E., Jicinsky J. K., Heyer E. K. Effect of chronic phenobarbital administration on the gamma-glutamyl transpeptidase activity of hyperplastic liver lesions induced in rats by the Solt/Farber initiation: selection process of hepatocarcinogenesis. Carcinogenesis. 1984 Dec;5(12):1737–1740. doi: 10.1093/carcin/5.12.1737. [DOI] [PubMed] [Google Scholar]
- Squire R. A., Levitt M. H. Report of a workshop on classification of specific hepatocellular lesions in rats. Cancer Res. 1975 Nov;35(11 Pt 1):3214–3223. [PubMed] [Google Scholar]
- Tatematsu M., Takano T., Hasegawa R., Imaida K., Nakanowatari J., Ito N. A sequential quantitative study of the reversibility or irreversibility of liver hyperplastic nodules in rats exposed to hepatocarcinogens. Gan. 1980 Dec;71(6):843–855. [PubMed] [Google Scholar]
- Walker A. I., Thorpe E., Stevenson D. E. The toxicology of dieldrin (HEOD). I. Long-term oral toxicity studies in mice. Food Cosmet Toxicol. 1973 Jun;11(3):415–432. doi: 10.1016/0015-6264(73)90007-2. [DOI] [PubMed] [Google Scholar]
- Ward J. M. Morphology of foci of altered hepatocytes and naturally-occurring hepatocellular tumors in F344 rats. Virchows Arch A Pathol Anat Histol. 1981;390(3):339–345. doi: 10.1007/BF00496563. [DOI] [PubMed] [Google Scholar]
- Xu Y. H., Campbell H. A., Sattler G. L., Hendrich S., Maronpot R., Sato K., Pitot H. C. Quantitative stereological analysis of the effects of age and sex on multistage hepatocarcinogenesis in the rat by use of four cytochemical markers. Cancer Res. 1990 Feb 1;50(3):472–479. [PubMed] [Google Scholar]
- Xu Y. H., Sattler G. L., Pitot H. C. A method for the comparative study of replicative DNA synthesis in GGT-positive and GGT-negative hepatocytes in primary culture isolated from carcinogen-treated rats. In Vitro Cell Dev Biol. 1988 Oct;24(10):995–1000. doi: 10.1007/BF02620872. [DOI] [PubMed] [Google Scholar]
- Yeldandi A. V., Subbarao V., Rajan A., Reddy J. K., Rao M. S. gamma-Glutamyltranspeptidase-negative phenotypic property of preneoplastic and neoplastic liver lesions induced by ciprofibrate does not change following 2-acetylaminofluorene administration. Carcinogenesis. 1989 Apr;10(4):797–799. doi: 10.1093/carcin/10.4.797. [DOI] [PubMed] [Google Scholar]
