Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1989 Jul;82:23–29. doi: 10.1289/ehp.898223

Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity.

M T Smith 1, J W Yager 1, K L Steinmetz 1, D A Eastmond 1
PMCID: PMC1568105  PMID: 2551665

Abstract

The metabolism of two of benzene's phenolic metabolites, phenol and hydroquinone, by peroxidase enzymes has been studied in detail. Studies employing horseradish peroxidase and human myeloperoxidase have shown that in the presence of hydrogen peroxide phenol is converted to 4,4'-diphenoquinone and other covalent binding metabolites, whereas hydroquinone is converted solely to 1,4-benzoquinone. Surprisingly, phenol stimulates the latter conversion rather than inhibiting it, an effect that may play a role in the in vivo myelotoxicity of benzene. Indeed, repeated coadministration of phenol and hydroquinone to B6C3F1 mice results in a dramatic and significant decrease in bone marrow cellularity similar to that observed following benzene exposure. A mechanism of benzene-induced myelotoxicity is therefore proposed in which the accumulation and interaction of phenol and hydroquinone in the bone marrow and the peroxidase-dependent formation of 1,4-benzoquinone are important components. This mechanism may also be responsible, at least in part, for benzene's genotoxic effects, as 1,4-benzoquinone has been shown to damage DNA and is shown here to induce multiple micronuclei in human lymphocytes. Secondary activation of benzene's phenol metabolites in the bone marrow may therefore play an important role in benzene's myelotoxic and carcinogenic effects.

Full text

PDF
23

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews L. S., Lee E. W., Witmer C. M., Kocsis J. J., Snyder R. Effects of toluene on the metabolism, disposition and hemopoietic toxicity of [3H]benzene. Biochem Pharmacol. 1977 Feb 15;26(4):293–300. doi: 10.1016/0006-2952(77)90180-0. [DOI] [PubMed] [Google Scholar]
  2. Andrews L. S., Sasame H. A., Gillette J. R. 3H-Benzene metabolism in rabbit bone marrow. Life Sci. 1979 Aug 13;25(7):567–572. doi: 10.1016/0024-3205(79)90550-2. [DOI] [PubMed] [Google Scholar]
  3. Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choy W. N., MacGregor J. T., Shelby M. D., Maronpot R. R. Induction of micronuclei by benzene in B6C3F1 mice: retrospective analysis of peripheral blood smears from the NTP carcinogenesis bioassay. Mutat Res. 1985 May-Jun;143(1-2):55–59. doi: 10.1016/0165-7992(85)90105-8. [DOI] [PubMed] [Google Scholar]
  5. Danner D. J., Brignac P. J., Jr, Arceneaux D., Patel V. The oxidation of phenol and its reaction product by horseradish peroxidase and hydrogen peroxide. Arch Biochem Biophys. 1973 Jun;156(2):759–763. doi: 10.1016/0003-9861(73)90329-9. [DOI] [PubMed] [Google Scholar]
  6. Eastmond D. A., French R. C., Ross D., Smith M. T. Metabolic activation of 1-naphthol and phenol by a simple superoxide-generating system and human leukocytes. Chem Biol Interact. 1987;63(1):47–62. doi: 10.1016/0009-2797(87)90104-9. [DOI] [PubMed] [Google Scholar]
  7. Eastmond D. A., Smith M. T., Irons R. D. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Toxicol Appl Pharmacol. 1987 Oct;91(1):85–95. doi: 10.1016/0041-008x(87)90196-7. [DOI] [PubMed] [Google Scholar]
  8. Eastmond D. A., Smith M. T., Ruzo L. O., Ross D. Metabolic activation of phenol by human myeloperoxidase and horseradish peroxidase. Mol Pharmacol. 1986 Dec;30(6):674–679. [PubMed] [Google Scholar]
  9. Egan R. W., Gale P. H., VandenHeuvel W. J., Baptista E. M., Kuehl F. A., Jr Mechanism of oxygen transfer by prostaglandin hydroperoxidase. J Biol Chem. 1980 Jan 25;255(2):323–326. [PubMed] [Google Scholar]
  10. Erexson G. L., Wilmer J. L., Kligerman A. D. Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Cancer Res. 1985 Jun;45(6):2471–2477. [PubMed] [Google Scholar]
  11. Gad-El Karim M. M., Ramanujam V. M., Legator M. S. trans,trans-Muconic acid, an open-chain urinary metabolite of benzene in mice. Quantification by high-pressure liquid chromatography. Xenobiotica. 1985 Mar;15(3):211–220. doi: 10.3109/00498258509045351. [DOI] [PubMed] [Google Scholar]
  12. Gaido K. W., Wierda D. Suppression of bone marrow stromal cell function by benzene and hydroquinone is ameliorated by indomethacin. Toxicol Appl Pharmacol. 1987 Jul;89(3):378–390. doi: 10.1016/0041-008x(87)90157-8. [DOI] [PubMed] [Google Scholar]
  13. Glatt H., Padykula R., Berchtold G. A., Ludewig G., Platt K. L., Klein J., Oesch F. Multiple activation pathways of benzene leading to products with varying genotoxic characteristics. Environ Health Perspect. 1989 Jul;82:81–89. doi: 10.1289/ehp.898281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greenlee W. F., Gross E. A., Irons R. D. Relationship between benzene toxicity and the disposition of 14C-labelled benzene metabolites in the rat. Chem Biol Interact. 1981 Jan;33(2-3):285–299. doi: 10.1016/0009-2797(81)90047-8. [DOI] [PubMed] [Google Scholar]
  15. Himmelhoch S. R., Evans W. H., Mage M. G., Peterson E. A. Purification of myeloperoxidases from the bone marrow of the guinea pig. Biochemistry. 1969 Mar;8(3):914–921. doi: 10.1021/bi00831a022. [DOI] [PubMed] [Google Scholar]
  16. Irons R. D., Neptun D. A., Pfeifer R. W. Inhibition of lymphocyte transformation and microtubule assembly by quinone metabolites of benzene: evidence for a common mechanism. J Reticuloendothel Soc. 1981 Nov;30(5):359–372. [PubMed] [Google Scholar]
  17. Kariya K., Lee E., Hirouchi M., Hosokawa M., Sayo H. Purification and some properties of peroxidases of rat bone marrow. Biochim Biophys Acta. 1987 Jan 5;911(1):95–101. doi: 10.1016/0167-4838(87)90274-3. [DOI] [PubMed] [Google Scholar]
  18. Pellack-Walker P., Blumer J. L. DNA damage in L5178YS cells following exposure to benzene metabolites. Mol Pharmacol. 1986 Jul;30(1):42–47. [PubMed] [Google Scholar]
  19. Rickert D. E., Baker T. S., Bus J. S., Barrow C. S., Irons R. D. Benzene disposition in the rat after exposure by inhalation. Toxicol Appl Pharmacol. 1979 Jul;49(3):417–423. doi: 10.1016/0041-008x(79)90441-1. [DOI] [PubMed] [Google Scholar]
  20. Rusch G. M., Leong B. K., Laskin S. Benzene metabolism. J Toxicol Environ Health Suppl. 1977;2:23–36. [PubMed] [Google Scholar]
  21. Sammett D., Lee E. W., Kocsis J. J., Snyder R. Partial hepatectomy reduces both metabolism and toxicity of benzene. J Toxicol Environ Health. 1979 Sep;5(5):785–792. doi: 10.1080/15287397909529789. [DOI] [PubMed] [Google Scholar]
  22. Sawahata T., Neal R. A. Horseradish peroxidase-mediated oxidation of phenol. Biochem Biophys Res Commun. 1982 Dec 15;109(3):988–994. doi: 10.1016/0006-291x(82)92037-x. [DOI] [PubMed] [Google Scholar]
  23. Smart R. C., Zannoni V. G. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene. Mol Pharmacol. 1984 Jul;26(1):105–111. [PubMed] [Google Scholar]
  24. Subrahmanyam V. V., O'Brien P. J. Peroxidase-catalysed binding of [U-14C]phenol to DNA. Xenobiotica. 1985 Oct;15(10):859–871. doi: 10.3109/00498258509045037. [DOI] [PubMed] [Google Scholar]
  25. Subrahmanyam V. V., O'Brien P. J. Phenol oxidation product(s), formed by a peroxidase reaction, that bind to DNA. Xenobiotica. 1985 Oct;15(10):873–885. doi: 10.3109/00498258509045038. [DOI] [PubMed] [Google Scholar]
  26. Taniguchi K., Takanaka K. Inhibitory effects of various drugs on phorbol myristate acetate and n-formyl methionyl leucyl phenylalanine induced O2- production in polymorphonuclear leukocytes. Biochem Pharmacol. 1984 Oct 15;33(20):3165–3169. doi: 10.1016/0006-2952(84)90072-8. [DOI] [PubMed] [Google Scholar]
  27. Witz G., Rao G. S., Goldstein B. D. Short-term toxicity of trans,trans-muconaldehyde. Toxicol Appl Pharmacol. 1985 Sep 30;80(3):511–516. doi: 10.1016/0041-008x(85)90396-5. [DOI] [PubMed] [Google Scholar]
  28. Zakhireh B., Root R. K. Development of Oxidase activity by human bone marrow granulocytes. Blood. 1979 Aug;54(2):429–439. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES