Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1984 Aug;57:241–248. doi: 10.1289/ehp.8457241

Metabolism and excretion of 2-ethoxyethanol in the adult male rat.

K L Cheever, H B Plotnick, D E Richards, W W Weigel
PMCID: PMC1568278  PMID: 6437805

Abstract

The routes of 14C excretion following the administration of a single oral 230 mg/kg body weight dose of 2-ethoxyethanol [ethanol-1,2-14C] or 2-ethoxyethanol [ethoxy-1-14C] to male Sprague-Dawley rats were investigated. Elimination of the 14C by the urinary route accounted for 76 to 80% of the dose within 96 hr. The main pathway of biotransformation is oxidation to the corresponding acid, with some subsequent conjugation of the acid metabolite with glycine. The major metabolites, ethoxyacetic acid and N-ethoxy-acetyl glycine, representing 73 to 76% of the administered dose, were eliminated in the urine. The major difference in the metabolic profiles of the two radiochemicals was in the rate and amount of 14CO2 expired via the lung. Of the administered 14C, 11.7% of the ethoxy-labeled and 4.6% of the ethanol-labeled compounds were eliminated as CO2. The biological half-time was 9.9 +/- 1.5 hr for the ethoxy-labeled compound and 12.5 +/- 1.9 hr for the ethanol label. After administration of the ethanol-labeled compound, the only radiolabeled component found in the rat testes was identified as ethoxyacetic acid. Results of this study suggest that the reported testicular effects in the rat may be a result of tissue levels of ethoxyacetic acid.

Full text

PDF
241

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAY H. G., CRADDOCK V. M., THORPE W. V. Metabolism of ethers in the rabbit. 2. Nuclear-substituted anisoles. Biochem J. 1955 Jun;60(2):225–232. doi: 10.1042/bj0600225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARPENTER C. P., KECK G. A., NAIR J. H., 3rd, POZZANI U. C., SMYTH H. F., Jr, WEIL C. S. The toxicity of butyl cellosolve solvent. AMA Arch Ind Health. 1956 Aug;14(2):114–131. [PubMed] [Google Scholar]
  3. Gréen K., Cohen E. N. On the metabolism of ( 14 C)-diethyl ether in the mouse. Biochem Pharmacol. 1971 Feb;20(2):393–399. doi: 10.1016/0006-2952(71)90073-6. [DOI] [PubMed] [Google Scholar]
  4. Hutson D. H., Pickering B. A. The metabolism of isopropyl oxitol in rat and dog. Xenobiotica. 1971 Mar;1(2):105–119. doi: 10.3109/00498257109044383. [DOI] [PubMed] [Google Scholar]
  5. Jönsson A. K., Pedersen J., Steen G. Ethoxyacetic acid and N-ethoxyacetylglycine: metabolites of ethoxyethanol (ethylcellosolve) in rats. Acta Pharmacol Toxicol (Copenh) 1982 May;50(5):358–362. doi: 10.1111/j.1600-0773.1982.tb00987.x. [DOI] [PubMed] [Google Scholar]
  6. Jönsson A. K., Steen G. n-Butoxyacetic acid, a urinary metabolite from inhaled n-butoxyethanol (Butylcellosolve). Acta Pharmacol Toxicol (Copenh) 1978 May;42(5):354–356. doi: 10.1111/j.1600-0773.1978.tb02216.x. [DOI] [PubMed] [Google Scholar]
  7. Miller R. R., Ayres J. A., Calhoun L. L., Young J. T., McKenna M. J. Comparative short-term inhalation toxicity of ethylene glycol monomethyl ether and propylene glycol monomethyl ether in rats and mouse. Toxicol Appl Pharmacol. 1981 Dec;61(3):368–377. doi: 10.1016/0041-008x(81)90358-6. [DOI] [PubMed] [Google Scholar]
  8. Miller R. R., Carreon R. E., Young J. T., McKenna M. J. Toxicity of methoxyacetic acid in rats. Fundam Appl Toxicol. 1982 Jul-Aug;2(4):158–160. doi: 10.1016/s0272-0590(82)80039-0. [DOI] [PubMed] [Google Scholar]
  9. Miller R. R., Hermann E. A., Langvardt P. W., McKenna M. J., Schwetz B. A. Comparative metabolism and disposition of ethylene glycol monomethyl ether and propylene glycol monomethyl ether in male rats. Toxicol Appl Pharmacol. 1983 Feb;67(2):229–237. doi: 10.1016/0041-008x(83)90229-6. [DOI] [PubMed] [Google Scholar]
  10. Mørland J., Aune H., Bessesen A., Renck H. Formation of acetaldehyde from diethyl ether in man. Adv Exp Med Biol. 1980;126:453–461. doi: 10.1007/978-1-4684-3632-7_33. [DOI] [PubMed] [Google Scholar]
  11. Nagano K., Nakayama E., Koyano M., Oobayashi H., Adachi H., Yamada T. [Testicular atrophy of mice induced by ethylene glycol mono alkyl ethers (author's transl)]. Sangyo Igaku. 1979 Jan;21(1):29–35. doi: 10.1539/joh1959.21.29. [DOI] [PubMed] [Google Scholar]
  12. Nelson B. K., Brightwell W. S., Setzer J. V., Taylor B. J., Hornung R. W., O'Donohue T. L. Ethoxyethanol behavioral teratology in rats. Neurotoxicology. 1981 Oct;2(2):231–249. [PubMed] [Google Scholar]
  13. Van Dyke R. A. Metabolism of volatile anesthetics. 3. Induction of microsomal dechlorinating and ether-cleaving enzymes. J Pharmacol Exp Ther. 1966 Nov;154(2):364–369. [PubMed] [Google Scholar]
  14. WOLF J. P., 3rd, NIEMANN C. The alpha-chymotrypsin catalyzed hydrolysis of a series of acylated glycine methyl esters. Biochemistry. 1963 Jan-Feb;2:82–90. doi: 10.1021/bi00901a016. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES