Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1990 Apr;85:151–157. doi: 10.1289/ehp.85-1568331

Acrolein depletes the neuropeptides CGRP and substance P in sensory nerves in rat respiratory tract.

D R Springall 1, J A Edginton 1, P N Price 1, D W Swanston 1, C Noel 1, S R Bloom 1, J M Polak 1
PMCID: PMC1568331  PMID: 1696540

Abstract

The mammalian respiratory tract is densely innervated by autonomic and sensory nerves around airways and blood vessels. Subsets of these nerves contain a number of putative neurotransmitter peptides, such as substance P and calcitonin gene-related peptide (CGRP) in sensory nerves and vasoactive intestinal polypeptide (VIP), possibly serving autonomic functions. CGRP is also found in endocrine cells in rat airway epithelium. These peptides are all pharmacologically potent effectors of bronchial and vascular smooth muscle and bronchial secretion. Their functions in vivo are less well established. We have therefore examined the effects of inhaled acrolein, a sensory irritant, on three pulmonary neuropeptides: CGRP, substance P, and VIP. Groups of rats (n = 3 each) were exposed for 10 min to acrolein in air (Ct = 510, 1858, and 5693 mg.min/m3) or to air alone. Fifteen minutes later they were killed (pentabarbitone IP) and their respiratory tracts were dissected and fixed in 0.4% p-benzoquinone solution. Cryostat sections were stained by indirect immunofluorescence for a general nerve marker (PGP 9.5) and neuropeptides. The acrolein-treated animals had a dose-related decrease in tracheal substance P- and CGRP-immunoreactive nerve fibers compared with controls. No change was seen in total nerve fiber distribution and number (PGP 9.5) or VIP immunoreactivity, nor in CGRP-immunoreactive epithelial endocrine cells. It is concluded that the rat tracheal peptidergic nerves are a sensitive indicator of inhaled irritant substances. Their reduced immunoreactivity may be because of a release of sensory neuropeptides that could play a role in the physiological response to irritant or toxic compounds.

Full text

PDF
151

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buckley L. A., Jiang X. Z., James R. A., Morgan K. T., Barrow C. S. Respiratory tract lesions induced by sensory irritants at the RD50 concentration. Toxicol Appl Pharmacol. 1984 Jul;74(3):417–429. doi: 10.1016/0041-008x(84)90295-3. [DOI] [PubMed] [Google Scholar]
  2. Cadieux A., Springall D. R., Mulderry P. K., Rodrigo J., Ghatei M. A., Terenghi G., Bloom S. R., Polak J. M. Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract: effect of capsaicin treatment and surgical denervations. Neuroscience. 1986 Oct;19(2):605–627. doi: 10.1016/0306-4522(86)90285-x. [DOI] [PubMed] [Google Scholar]
  3. Cheung A., Polak J. M., Bauer F. E., Cadieux A., Christofides N. D., Springall D. R., Bloom S. R. Distribution of galanin immunoreactivity in the respiratory tract of pig, guinea pig, rat, and dog. Thorax. 1985 Dec;40(12):889–896. doi: 10.1136/thx.40.12.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christofides N. D., Yiangou Y., Piper P. J., Ghatei M. A., Sheppard M. N., Tatemoto K., Polak J. M., Bloom S. R. Distribution of peptide histidine isoleucine in the mammalian respiratory tract and some aspects of its pharmacology. Endocrinology. 1984 Nov;115(5):1958–1963. doi: 10.1210/endo-115-5-1958. [DOI] [PubMed] [Google Scholar]
  5. Davis T. R., Battista S. P., Kensler C. J. Mechanism of respiratory effects during exposure of guinea pigs to irritants. Arch Environ Health. 1967 Oct;15(4):412–419. doi: 10.1080/00039896.1967.10664942. [DOI] [PubMed] [Google Scholar]
  6. Egle J. L., Jr, Hudgins P. M. Dose-dependent sympathomimetic and cardioinhibitory effects of acrolein and formaldehyde in the anesthetized rat. Toxicol Appl Pharmacol. 1974 Jun;28(3):358–366. doi: 10.1016/0041-008x(74)90221-x. [DOI] [PubMed] [Google Scholar]
  7. Egle J. L., Jr Retention of inhaled formaldehyde, propionaldehyde, and acrolein in the dog. Arch Environ Health. 1972 Aug;25(2):119–124. doi: 10.1080/00039896.1972.10666147. [DOI] [PubMed] [Google Scholar]
  8. Gulbenkian S., Merighi A., Wharton J., Varndell I. M., Polak J. M. Ultrastructural evidence for the coexistence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea pig. J Neurocytol. 1986 Aug;15(4):535–542. doi: 10.1007/BF01611735. [DOI] [PubMed] [Google Scholar]
  9. Hua X. Y., Theodorsson-Norheim E., Brodin E., Lundberg J. M., Hökfelt T. Multiple tachykinins (neurokinin A, neuropeptide K and substance P) in capsaicin-sensitive sensory neurons in the guinea-pig. Regul Pept. 1985 Dec;13(1):1–19. doi: 10.1016/0167-0115(85)90082-5. [DOI] [PubMed] [Google Scholar]
  10. Izard C., Libermann C. Acrolein. Mutat Res. 1978;47(2):115–138. doi: 10.1016/0165-1110(78)90016-7. [DOI] [PubMed] [Google Scholar]
  11. Lundberg J. M., Martling C. R., Saria A., Folkers K., Rosell S. Cigarette smoke-induced airway oedema due to activation of capsaicin-sensitive vagal afferents and substance P release. Neuroscience. 1983 Dec;10(4):1361–1368. doi: 10.1016/0306-4522(83)90117-3. [DOI] [PubMed] [Google Scholar]
  12. Lundberg J. M., Terenius L., Hökfelt T., Goldstein M. High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man. Neurosci Lett. 1983 Dec 2;42(2):167–172. doi: 10.1016/0304-3940(83)90401-9. [DOI] [PubMed] [Google Scholar]
  13. Lyon J. P., Jenkins L. J., Jr, Jones R. A., Coon R. A., Siegel J. Repeated and continuous exposure of laboratory animals to acrolein. Toxicol Appl Pharmacol. 1970 Nov;17(3):726–732. doi: 10.1016/0041-008x(70)90047-5. [DOI] [PubMed] [Google Scholar]
  14. Richardson J. B. Nerve supply to the lungs. Am Rev Respir Dis. 1979 May;119(5):785–802. doi: 10.1164/arrd.1979.119.5.785. [DOI] [PubMed] [Google Scholar]
  15. Saria A., Theodorsson-Norheim E., Gamse R., Lundberg J. M. Release of substance P- and substance K-like immunoreactivities from the isolated perfused guinea-pig lung. Eur J Pharmacol. 1984 Oct 30;106(1):207–208. doi: 10.1016/0014-2999(84)90699-x. [DOI] [PubMed] [Google Scholar]
  16. Sheppard M. N., Polak J. M., Allen J. M., Bloom S. R. Neuropeptide tyrosine (NPY): a newly discovered peptide is present in the mammalian respiratory tract. Thorax. 1984 May;39(5):326–330. doi: 10.1136/thx.39.5.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sprince H., Parker C. M., Smith G. G. Comparison of protection by L-ascorbic acid, L-cysteine, and adrenergic-blocking agents against acetaldehyde, acrolein, and formaldehyde toxicity: implications in smoking. Agents Actions. 1979 Oct;9(4):407–414. doi: 10.1007/BF01970669. [DOI] [PubMed] [Google Scholar]
  18. Springall D. R., Cadieux A., Oliveira H., Su H., Royston D., Polak J. M. Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate from vagal and dorsal root ganglia. J Auton Nerv Syst. 1987 Aug;20(2):155–166. doi: 10.1016/0165-1838(87)90113-5. [DOI] [PubMed] [Google Scholar]
  19. Stedman R. L. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968 Apr;68(2):153–207. doi: 10.1021/cr60252a002. [DOI] [PubMed] [Google Scholar]
  20. Terenghi G., McGregor G. P., Bhuttacharji S., Wharton J., Bloom S. R., Polak J. M. Vagal origin of substance P-containing nerves in the guinea pig lung. Neurosci Lett. 1983 Apr 29;36(3):229–235. doi: 10.1016/0304-3940(83)90005-8. [DOI] [PubMed] [Google Scholar]
  21. Thompson R. J., Doran J. F., Jackson P., Dhillon A. P., Rode J. PGP 9.5--a new marker for vertebrate neurons and neuroendocrine cells. Brain Res. 1983 Nov 14;278(1-2):224–228. doi: 10.1016/0006-8993(83)90241-x. [DOI] [PubMed] [Google Scholar]
  22. Uddman R., Alumets J., Densert O., Håkanson R., Sundler F. Occurrence and distribution of VIP nerves in the nasal mucosa and tracheobronchial wall. Acta Otolaryngol. 1978 Nov-Dec;86(5-6):443–448. doi: 10.3109/00016487809107524. [DOI] [PubMed] [Google Scholar]
  23. Wharton J., Polak J. M., Bloom S. R., Will J. A., Brown M. R., Pearse A. G. Substance P-like immunoreactive nerves in mammalian lung. Invest Cell Pathol. 1979 Jan-Mar;2(1):3–10. [PubMed] [Google Scholar]
  24. Wiesenfeld-Hallin Z., Hökfelt T., Lundberg J. M., Forssmann W. G., Reinecke M., Tschopp F. A., Fischer J. A. Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci Lett. 1984 Nov 23;52(1-2):199–204. doi: 10.1016/0304-3940(84)90374-4. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES