Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1990 Apr;85:95–100. doi: 10.1289/ehp.85-1568337

Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.

R D Verschoyle 1, D Dinsdale 1
PMCID: PMC1568337  PMID: 2384072

Abstract

Protection afforded by trialkyl phosphorothionates against the lung injury caused by trialkyl phosphorothiolates probably results from the inhibition by the P = S moiety of the thionates, of one or more pulmonary cytochrome P-450 isozymes. The aromatic hydrocarbons p-xylene and pseudocumene also protect against this injury and inhibit some P-450 isozymes, but by a different mechanism. OOS-Trimethylphosphorothionate and p-xylene were compared as protective agents against the effect of OOS-trimethylphosphorothiolate and two other lung toxins ipomeanol and 1-nitronaphthalene that are known to be activated by cytochrome P-450. The effects of these protective compounds, in vivo, on pulmonary cytochrome P-450 activity were also determined. Both compounds inhibited pentoxyresorufin O-deethylase activity, but not ethoxyresorufin O-deethylase. The phosphorothionate was most effective against lung injury caused by the phosphorothiolates and 1-nitronaphthalene, whereas p-xylene was much more effective against ipomeanol. beta-Naphthoflavone, which induces pulmonary ethoxyresorufin O-deethylase activity, did not protect against phosphorothiolate or 1-nitronaphthalene injury, and it was only marginally effective in decreasing the toxicity of ipomeanol.

Full text

PDF
95

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge W. N., Dinsdale D., Nemery B., Verschoyle R. D. Some aspects of the toxicology of trimethyl and triethyl phosphorothioates. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 2):S47–S60. doi: 10.1016/0272-0590(85)90114-9. [DOI] [PubMed] [Google Scholar]
  2. Aldridge W. N., Miles J. W., Mount D. L., Verschoyle R. D. The toxicological properties of impurities in malathion. Arch Toxicol. 1979 Jun 8;42(2):95–106. doi: 10.1007/BF00316489. [DOI] [PubMed] [Google Scholar]
  3. Boobis A. R., Whyte C., Davies D. S. Selective induction and inhibition of the components of 7-ethoxycoumarin O-deethylase activity in the rat. Xenobiotica. 1986 Mar;16(3):233–238. doi: 10.3109/00498258609043526. [DOI] [PubMed] [Google Scholar]
  4. Boyd M. R. Evidence for the Clara cell as a site of cytochrome P450-dependent mixed-function oxidase activity in lung. Nature. 1977 Oct 20;269(5630):713–715. doi: 10.1038/269713a0. [DOI] [PubMed] [Google Scholar]
  5. Boyd M. R. Metabolic activation and lung toxicity: a basis for cell-selective pulmonary damage by foreign chemicals. Environ Health Perspect. 1984 Apr;55:47–51. doi: 10.1289/ehp.845547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christou M., Wilson N. M., Jefcoate C. R. Expression and function of three cytochrome P-450 isozymes in rat extrahepatic tissues. Arch Biochem Biophys. 1987 Nov 1;258(2):519–534. doi: 10.1016/0003-9861(87)90374-2. [DOI] [PubMed] [Google Scholar]
  7. Dinsdale D., Verschoyle R. D., Ingham J. E. Ultrastructural changes in rat Clara cells induced by a single dose of O,S,S-trimethyl phosphorodithioate. Arch Toxicol. 1984 Nov;56(1):59–65. doi: 10.1007/BF00316355. [DOI] [PubMed] [Google Scholar]
  8. Dinsdale D., Verschoyle R. D. Pulmonary toxicity of naphthalene derivatives in the rat. Arch Toxicol Suppl. 1987;11:288–291. doi: 10.1007/978-3-642-72558-6_54. [DOI] [PubMed] [Google Scholar]
  9. Doster A. R., Farrell R. L., Wilson B. J. An ultrastructural study of bronchiolar lesions in rats induced by 4-ipomeanol, a product from mold-damaged sweet potatoes. Am J Pathol. 1983 Apr;111(1):56–61. [PMC free article] [PubMed] [Google Scholar]
  10. Elovaara E., Zitting A., Nickels J., Aitio A. m-Xylene inhalation destroys cytochrome P-450 in rat lung at low exposure. Arch Toxicol. 1987;61(1):21–26. doi: 10.1007/BF00324543. [DOI] [PubMed] [Google Scholar]
  11. Johnson D. E., Riley M. G., Cornish H. H. Acute target organ toxicity of 1-nitronaphthalene in the rat. J Appl Toxicol. 1984 Oct;4(5):253–257. doi: 10.1002/jat.2550040508. [DOI] [PubMed] [Google Scholar]
  12. Lubet R. A., Mayer R. T., Cameron J. W., Nims R. W., Burke M. D., Wolff T., Guengerich F. P. Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Arch Biochem Biophys. 1985 Apr;238(1):43–48. doi: 10.1016/0003-9861(85)90138-9. [DOI] [PubMed] [Google Scholar]
  13. Nebert D. W., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B., Levin W. The P450 gene superfamily: recommended nomenclature. DNA. 1987 Feb;6(1):1–11. doi: 10.1089/dna.1987.6.1. [DOI] [PubMed] [Google Scholar]
  14. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  15. Patel J. M., Harper C., Drew R. T. The biotransformation of p-xylene to a toxic aldehyde. Drug Metab Dispos. 1978 Jul-Aug;6(4):368–374. [PubMed] [Google Scholar]
  16. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  17. Pyykkö K., Paavilainen S., Metsä-Ketelä T., Laustiola K. The increasing and decreasing effects of aromatic hydrocarbon solvents on pulmonary and hepatic cytochrome P-450 in the rat. Pharmacol Toxicol. 1987 Apr;60(4):288–293. doi: 10.1111/j.1600-0773.1987.tb01754.x. [DOI] [PubMed] [Google Scholar]
  18. Rasmussen R. E. Metabolism and macromolecular binding of 1-nitronaphthalene in the mouse. Toxicology. 1986 Oct;41(2):233–247. doi: 10.1016/0300-483x(86)90202-7. [DOI] [PubMed] [Google Scholar]
  19. Smith A. G., Francis J. E., Bird I. Distinction between octachlorostyrene and hexachlorobenzene in their potentials to induce ethoxyphenoxazone deethylase and cause porphyria in rats and mice. J Biochem Toxicol. 1986 Mar;1(1):105–117. doi: 10.1002/jbt.2570010111. [DOI] [PubMed] [Google Scholar]
  20. Smith B. R., Plummer J. L., Wolf C. R., Philpot R. M., Bend J. R. p-Xylene metabolism by rabbit lung and liver and its relationship to the selective destruction of pulmonary cytochrome P-450. J Pharmacol Exp Ther. 1982 Dec;223(3):736–742. [PubMed] [Google Scholar]
  21. Toftgård R., Haaparanta T., Halpert J. Rat lung and liver cytochrome P-450 isozymes involved in the hydroxylation of m-xylene. Toxicology. 1986 Jun;39(3):225–231. doi: 10.1016/0300-483x(86)90024-7. [DOI] [PubMed] [Google Scholar]
  22. Umetsu N., Grose F. H., Allahyari R., Abu-El-Haj S., Fukuto T. R. Effect of impurities on the mammalian toxicity of technical malathion and acephate. J Agric Food Chem. 1977 Jul-Aug;25(4):946–952. doi: 10.1021/jf60212a008. [DOI] [PubMed] [Google Scholar]
  23. Verschoyle R. D., Aldridge W. N. The interaction between phosphorothionate insecticides, pneumotoxic trialkyl phosphorothiolates and effects on lung 7-ethoxycoumarin O-deethylase activity. Arch Toxicol. 1987 Jun;60(4):311–318. doi: 10.1007/BF01234671. [DOI] [PubMed] [Google Scholar]
  24. Wolf C. R., Seilman S., Oesch F., Mayer R. T., Burke M. D. Multiple forms of cytochrome P-450 related to forms induced marginally by phenobarbital. Differences in structure and in the metabolism of alkoxyresorufins. Biochem J. 1986 Nov 15;240(1):27–33. doi: 10.1042/bj2400027. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES