Abstract
At birth testicular androgens irreversibly program brain centers involved in hypothalamopituitary control of hepatic sex-dependent steroid and drug metabolism. This imprinting process results in activation of a hypothalamic “feminostatin”—a secreting center that is turned on just before puberty. Feminostatin inhibits pituitary secretion of “feminizing factor,” a pituitary hormone that feminizes the basal type of metabolism characterizing the liver of hypophysectomized and gonadectomized rats. Consequently, female rats that are devoid of feminostatin will secrete feminizing factor from the pituitary, leading to a feminine type of hepatic metabolism. Male rats have an active feminostatin-secreting center, and inhibition of pituitary feminizing factor release results in an autonomous type of liver metabolism. Female rats show a relative androgen unresponsiveness and seem incapable of releasing feminostatin after treatment with natural androgens, possibly because of more efficient metabolism (breakdown) of androgen in the female than in the male rat brain.
Frontal deafferentation at the retrochiasmatic and suprachiasmatic level resulted in a complete “feminization” of hepatic steroid metabolism in male rats. Such an effect was also seen when lesions involving mainly the anterior periventricular hypothalamic area and the suprachiasmatic nucleus were performed in male rats. No effects were seen in analogous lesions in female rats in any of the cases studied. These findings suggest that a region including the anterior hypothalamic periventricular area, the suprachiasmatic nucleus and adjacent areas is involved in the control of hepatic steroid metabolism. It is postulated that the neuronal cell bodies that produce feminostatin have their origins in this area of the hypothalamus or may send axons through this area to the basal hypothalamus and thus directly or indirectly influence the anterior pituitary gland.
Regulation by the central nervous system of a “lactogenic” (prolactin, Prl) receptor, present in the female rat liver, was also studied. This receptor is present in very low concentration or absent in the male rat. Anterior hypothalamic deafferentation at the retrochiasmatic level in male rats increased the hepatic Prl receptor concentration to the female level 3-4 days following the operation. A transection rostral to the suprachiasmatic nucleus had no effect on the concentration of Prl receptors in male animals. Our results demonstrate that the number of Prl receptors is regulated by the hypothalamo-pituitary system. The receptor-inducing pituitary factor might be related to the feminizing factor. Experiments were carried out to elucidate the nature of the Prl receptor-inducing pituitary factor.
Human growth hormone (hGH) continuously administered was shown to induce Prl receptors in livers from male and female hypophysectomized-gonadectomized rats. The prolactin receptors were increased to a level found in control female rat livers. This inductive effect of hGH was also seen in adrenalectomized and thyroidectomized male rats. The induced Prl receptors in male rats had similar characteristics as hepatic Prl receptors in female rats.
Also the endogenous rat hormones, rPrl and rGH, were administered in minipumps. In the concentration used (10 μg/μl), rPrl had no effect whereas rGH increased Prl receptor levels to approximately 37% of the female control level. These results indicate that GH or a peptide related to GH may be involved in the regulation of hepatic Prl receptors.
The hypothalamo-pituitary-liver axis represents a new concept in endocrine regulation of drug toxicity. The male rat liver has been shown to be more susceptible than the female rat liver to the hepatocarcinogenic action of certain drugs, and it is conceivable that sex differences in the metabolic activation of the drugs in the liver may explain the greater sensitivity of male rats to chemically induced hepatocellular carcinoma. Similar sex differences in liver cancer incidence have been reported in the human.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aragona C., Bohnet H. G., Fang V. S., Friesen H. G. Induction of lactogenic receptors. II. Studies on the liver of hypophysectomized male rats and on rats bearing a growth hormone secreting tumor. Endocr Res Commun. 1976;3(3-4):199–208. doi: 10.3109/07435807609056900. [DOI] [PubMed] [Google Scholar]
- Aragona C., Bohnet H. G., Friesen H. G. Prolactin binding sites in the male rat liver following castration. Endocrinology. 1976 Oct;99(4):1017–1022. doi: 10.1210/endo-99-4-1017. [DOI] [PubMed] [Google Scholar]
- Arimura A., Debeljuk L., Shiino M., Rennels E. G., Schally A. V. Follicular stimulation by chronic treatment with synthetic LH-releasing hormone in hypophysectomized female rats bearing pituitary grafts. Endocrinology. 1973 May;92(5):1507–1514. doi: 10.1210/endo-92-5-1507. [DOI] [PubMed] [Google Scholar]
- BERMAN C. Primary carcinoma of the liver. Adv Cancer Res. 1958;5:55–96. doi: 10.1016/s0065-230x(08)60409-1. [DOI] [PubMed] [Google Scholar]
- Begue R. J., Gustafsson J. A., Gustafsson S. A. Irreversible neonatal differentiation of corticosterone metabolism in rats in vivo. Eur J Biochem. 1973 Dec 17;40(2):361–366. doi: 10.1111/j.1432-1033.1973.tb03205.x. [DOI] [PubMed] [Google Scholar]
- Bell J. U., Ecobichon D. J. The development of kinetic parameters of hepatic drug-metabolizing enzymes in perinatal rats. Can J Biochem. 1975 Apr;53(4):433–437. doi: 10.1139/o75-059. [DOI] [PubMed] [Google Scholar]
- Berg A., Gustafsson J. A. Regulation of hydroxylation of 5 alpha-androstane-3 beta, 17 beta-diol in liver microsomes from male and female rats. J Biol Chem. 1973 Sep 25;248(18):6559–6567. [PubMed] [Google Scholar]
- Björkhem I., Eriksson H., Gustafsson J. A., Karlmar K. E., Stenberg A. Steroid hormone metabolism in developing rats. Eur J Biochem. 1972 May 23;27(2):318–326. doi: 10.1111/j.1432-1033.1972.tb01841.x. [DOI] [PubMed] [Google Scholar]
- Bohnet H. G., Aragona C., Friesen H. G. Induction of lactogenic receptors. I. In the liver of hypophysectomized female rats. Endocr Res Commun. 1976;3(3-4):187–198. doi: 10.3109/07435807609056899. [DOI] [PubMed] [Google Scholar]
- CONNEY A. H., SCHNEIDMAN K., JACOBSON M., KUNTZMAN R. DRUG-INDUCED CHANGES IN STEROID METABOLISM. Ann N Y Acad Sci. 1965 Mar 12;123:98–109. doi: 10.1111/j.1749-6632.1965.tb12248.x. [DOI] [PubMed] [Google Scholar]
- Castro J. A., Gillette J. R. Species and sex differences in the kinetic constants for the N-demethylation of ethyl-morphine by liver microsomes. Biochem Biophys Res Commun. 1967 Aug 7;28(3):426–430. doi: 10.1016/0006-291x(67)90329-4. [DOI] [PubMed] [Google Scholar]
- Chen C. L., Amenomori Y., Lu K. H., Voogt J. L., Meites J. Serum prolactin levels in rats with pituitary transplants or hypothalamic lesions. Neuroendocrinology. 1970;6(4):220–227. doi: 10.1159/000121946. [DOI] [PubMed] [Google Scholar]
- Colby H. D., Gaskin J. H., Kitay J. I. Effects of anterior pituitary hormones on hepatic corticosterone metabolism in rats. Steroids. 1974 Nov;24(5):679–686. doi: 10.1016/0039-128x(74)90020-8. [DOI] [PubMed] [Google Scholar]
- Costlow M. E., Buschow R. A., McGuire W. L. Prolactin stimulation of prolactin receptors in rat liver. Life Sci. 1975 Nov 1;17(9):1457–1465. doi: 10.1016/0024-3205(75)90167-8. [DOI] [PubMed] [Google Scholar]
- DORFMAN R. I., FORCHIELLI E. Separation of delta 4-5 alpha-hydrogenases from rat liver homogenates. J Biol Chem. 1956 Nov;223(1):443–448. [PubMed] [Google Scholar]
- Denef C. Effect of hypophysectomy and pituitary implants at puberty on the sexual differentiation of testosterone metabolism in rat liver. Endocrinology. 1974 Jun;94(6):1577–1582. doi: 10.1210/endo-94-6-1577. [DOI] [PubMed] [Google Scholar]
- Dörner G., Staudt J. Structural changes in the hypothalamic ventromedial nucleus of the male rat, following neonatal castration and androgen treatment. Neuroendocrinology. 1969;4(4):278–281. doi: 10.1159/000121758. [DOI] [PubMed] [Google Scholar]
- Dörner G., Staudt J. Structural changes in the preoptic anterior hypothalamic area of the male rat, following neonatal castration and androgen substitution. Neuroendocrinology. 1968;3(3):136–140. doi: 10.1159/000121703. [DOI] [PubMed] [Google Scholar]
- Einarsson K., Gustafsson J. A., Stenberg A. Neonatal imprinting of liver microsomal hydroxylation and reduction of steroids. J Biol Chem. 1973 Jul 25;248(14):4987–4997. [PubMed] [Google Scholar]
- Eneroth P., Gustafsson J. A., Larsson A., Skett P., Stenberg A., Sonnenschein C. Feminization of hepatic S metabolism in male rats with a transplanted (MtT/F4). Cell. 1976 Mar;7(3):413–417. doi: 10.1016/0092-8674(76)90171-9. [DOI] [PubMed] [Google Scholar]
- Eneroth P., Gustafsson J. A., Skett P., Stenberg A. The effects on hepatic steroid metabolism of an ectopic pituitary graft: a time study. Mol Cell Endocrinol. 1977 Apr;7(2):167–175. doi: 10.1016/0303-7207(77)90065-x. [DOI] [PubMed] [Google Scholar]
- Evans J. S. Local intravascular infusion with porcine hypothalamic extract changed the cytology and stimulated the secretory activity of rat pituitary autografts. Endocrinology. 1972 Jan;90(1):123–130. doi: 10.1210/endo-90-1-123. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gram T. E., Guarino A. M., Schroeder D. H., Gillette J. R. Changes in certain kinetic properties of hepatic microsomal aniline hydroxylase and ethylmorphine demethylase associated with postnatal development and maturation in male rats. Biochem J. 1969 Jul;113(4):681–685. doi: 10.1042/bj1130681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray G. D., Söderstein P., Tallentire D., Davidson J. M. Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology. 1978;25(3):174–191. doi: 10.1159/000122739. [DOI] [PubMed] [Google Scholar]
- Greenough W. T., Carter C. S., Steerman C., DeVoogd T. J. Sex differences in dentritic patterns in hamster preoptic area. Brain Res. 1977 Apr 22;126(1):63–72. doi: 10.1016/0006-8993(77)90215-3. [DOI] [PubMed] [Google Scholar]
- Griffin E. E., Miller L. L. Effects of hypophysectomy of liver donor on net synthesis of specific plasma proteins by the isolated perfused rat liver. Modulation of synthesis of albumin, fibrinogen, alpha 1-acid glycoprotein, alpha 2-(acute phase)-globulin, and haptoglobin by insulin, cortisol, triiodothyronine, and growth hormone. J Biol Chem. 1974 Aug 25;249(16):5062–5069. [PubMed] [Google Scholar]
- Gustafsson J. A. Androgen responsiveness of the liver of the developing rat. Biochem J. 1974 Nov;144(2):225–229. doi: 10.1042/bj1440225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustafsson J. A., Eneroth P., Hökfelt T., Skett P. Central control of hepatic steroid metabolism: effect of discrete hypothalamic lesions. Endocrinology. 1978 Jul;103(1):141–151. doi: 10.1210/endo-103-1-141. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A., Gustafsson S. A. Delayed expression of neonatal sexual differentiation of corticosteroid patterns in rat bile. Eur J Biochem. 1974 May 2;44(1):225–233. doi: 10.1111/j.1432-1033.1974.tb03477.x. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A., Ingelman-Sundberg M., Stenberg A., Hökfelt T. Feminization of hepatic steroid metabolism in male rats following electrothermic lesion of the hypothalamus. Endocrinology. 1976 Apr;98(4):922–926. doi: 10.1210/endo-98-4-922. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A., Pousette A., Svensson E. Sex-specific occurrence of androgen receptors in rat brain. J Biol Chem. 1976 Jul 10;251(13):4047–4054. [PubMed] [Google Scholar]
- Gustafsson J. A., Stenberg A. Influence of prolactin on the metabolism of steroid hormones in rat liver and adrenals. Acta Endocrinol (Copenh) 1975 Mar;78(3):545–553. doi: 10.1530/acta.0.0780545. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A., Stenberg A. Irreversible androgenic programming at birth of microsomal and soluble rat liver enzymes active on androstene-3,17-dione and 5alpha-androstane-3alpha,17beta-diol. J Biol Chem. 1974 Feb 10;249(3):711–718. [PubMed] [Google Scholar]
- Gustafsson J. A., Stenberg A. Masculinization of rat liver enzyme activities following hypophysectomy. Endocrinology. 1974 Sep;95(3):891–896. doi: 10.1210/endo-95-3-891. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A., Stenberg A. Neonatal programming of androgen responsiveness of liver of adult rats. J Biol Chem. 1974 Feb 10;249(3):719–723. [PubMed] [Google Scholar]
- Gustafsson J. A., Stenberg A. On the obligatory role of the hypophysis in sexual differentiation hepatic metabolism in rats. Proc Natl Acad Sci U S A. 1976 May;73(5):1462–1465. doi: 10.1073/pnas.73.5.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustafsson J. A., Stenberg A. Partial masculinization of rat liver enzyme activities following treatment with FSH. Endocrinology. 1975 Feb;96(2):501–504. doi: 10.1210/endo-96-2-501. [DOI] [PubMed] [Google Scholar]
- Gustafsson J., Skett P. Precocious 'feminization' of rat liver enzymes in the presence of ectopic pituitary tissue. J Endocrinol. 1978 Feb;76(2):187–191. doi: 10.1677/joe.0.0760187. [DOI] [PubMed] [Google Scholar]
- HARRIS G. W. SEX HORMONES, BRAIN DEVELOPMENT AND BRAIN FUNCTION. Endocrinology. 1964 Oct;75:627–648. doi: 10.1210/endo-75-4-627. [DOI] [PubMed] [Google Scholar]
- HIGGINSON J. THE GEOGRAPHICAL PATHOLOGY OF PRIMARY LIVER CANCER. Cancer Res. 1963 Nov;23:1624–1633. [PubMed] [Google Scholar]
- Herington A. C., Burger H. G., Veith N. M. Binding of human growth hormone to hepatic lactogenic binding sites: regulation by oestrogens and androgens. J Endocrinol. 1976 Sep;70(3):473–484. doi: 10.1677/joe.0.0700473. [DOI] [PubMed] [Google Scholar]
- Herington A. C., Veith N. M. The presence of lactogen but not growth hormone binding sites in the isolated rat hepatocyte. J Endocrinol. 1977 Aug;74(2):323–334. doi: 10.1677/joe.0.0740323. [DOI] [PubMed] [Google Scholar]
- Kamberi I. A., Mical R. S., Porter J. C. Hypophysial portal vessel infusion: in vivo demonstration of LRF, FRF, and PIF in pituitary stalk plasma. Endocrinology. 1971 Oct;89(4):1042–1046. doi: 10.1210/endo-89-4-1042. [DOI] [PubMed] [Google Scholar]
- Kelly P. A., Posner B. I., Tsushima T., Friesen H. G. Studies of insulin, growth hormone and prolactin binding: ontogenesis, effects of sex and pregnancy. Endocrinology. 1974 Aug;95(2):532–539. doi: 10.1210/endo-95-2-532. [DOI] [PubMed] [Google Scholar]
- Kim S., Wasserman L., Lew B., Ki Paik W. Studies on the effect of hypophysectomy on protein methylase II of rat. FEBS Lett. 1975 Mar 1;51(1):164–167. doi: 10.1016/0014-5793(75)80877-5. [DOI] [PubMed] [Google Scholar]
- Kramer R. E., Colby H. D. Feminization of hepatic steroid and drug metabolizing enzymes by growth hormone in male rats. J Endocrinol. 1976 Dec;71(3):449–450. doi: 10.1677/joe.0.0710449. [DOI] [PubMed] [Google Scholar]
- Kramer R. E., Greiner J. W., Canady W. J., Colby H. D. Relation of the pituitary gland to the actions of testosterone on hepatic ethylmorphine metabolism in rats. Biochem Pharmacol. 1975 Nov 15;24(22):2097–2099. doi: 10.1016/0006-2952(75)90108-2. [DOI] [PubMed] [Google Scholar]
- Kramer R. E., Greiner J. W., Colby H. D. Effects of luteinizing hormone and follicle stimulating hormone on hepatic drug metabolism in gonadectomizedmale and female rats. Biochem Pharmacol. 1977 Jan 1;26(1):66–69. doi: 10.1016/0006-2952(77)90133-2. [DOI] [PubMed] [Google Scholar]
- LIANG P. C., TUNG C. Morphologic study and etiology of primary liver carcinoma and its incidence in China. Chin Med J. 1959 Sep-Oct;79:336–347. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lam P. C., Morishige W. K., Rothchild I. Venous outflow of the hormones secreted by the rat pituitary autotransplanted beneath the kidney capsule. Proc Soc Exp Biol Med. 1976 Sep;152(4):615–617. doi: 10.3181/00379727-152-39452. [DOI] [PubMed] [Google Scholar]
- Lax E. R., Ghraf R., Schriefers H., Herrmann M., Petutschnigk D. Regulation of the activities of the enzymes involved in the metabolism of steroid hormones in rat liver: the effect of administration of anterior hypophyseal hormones and gonadotrophin preparations to hypophysectomized rats. Acta Endocrinol (Copenh) 1976 Aug;82(4):774–784. doi: 10.1530/acta.0.0820774. [DOI] [PubMed] [Google Scholar]
- Luckenbach A. H., Holland C. G., Allen R. O. Soapstone artifacts: tracing prehistoric trade patterns in virgimna. Science. 1975 Jan 10;187(4171):57–58. doi: 10.1126/science.187.4171.57. [DOI] [PubMed] [Google Scholar]
- MORRIS H. P., FIRMINGER H. I. Influence of sex and sex hormones on development of hepatomas and other hepatic lesions in strain AX C rats ingesting 2-diacetylaminofluorene. J Natl Cancer Inst. 1956 Feb;16(4):927–949. [PubMed] [Google Scholar]
- Meadows A. T., Naiman J. L., Valdes-Dapena M. Hepatoma associated with androgen therapy for aplastic anemia. J Pediatr. 1974 Jan;84(1):109–110. doi: 10.1016/s0022-3476(74)80565-2. [DOI] [PubMed] [Google Scholar]
- Norstedt G., Eneroth P., Gustafsson J. A., Hökfelt T., Skett P. Central control of lactogenic receptors in liver membranes: effect of hypothalamic deafferentation. Mol Cell Endocrinol. 1979 Dec;16(3):199–204. doi: 10.1016/0303-7207(79)90026-1. [DOI] [PubMed] [Google Scholar]
- Pfaff D. W. Morphological changes in the brains of adult male rats after neonatal castration. J Endocrinol. 1966 Dec;36(4):415–416. doi: 10.1677/joe.0.0360415. [DOI] [PubMed] [Google Scholar]
- Posner B. I., Kelly P. A., Friesen H. G. Induction of a lactogenic receptor in rat liver: influence of estrogen and the pituitary. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2407–2410. doi: 10.1073/pnas.71.6.2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Posner B. I., Kelly P. A., Shiu R. P., Friesen H. G. Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variation and characterization. Endocrinology. 1974 Aug;95(2):521–531. doi: 10.1210/endo-95-2-521. [DOI] [PubMed] [Google Scholar]
- Posner B. I. Regulation of lactogen specific binding sites in rat liver: studies on the role of lactogens and estrogen. Endocrinology. 1976 Nov;99(5):1168–1177. doi: 10.1210/endo-99-5-1168. [DOI] [PubMed] [Google Scholar]
- Postel-Vinay M. C. Binding of human growth hormone to rat liver membranes: lactogenic and somatotropic sties. FEBS Lett. 1976 Oct 15;69(1):137–140. doi: 10.1016/0014-5793(76)80670-9. [DOI] [PubMed] [Google Scholar]
- REUBER M. D., FIRMINGER H. I. Effect of progesterone and diethylstilbestrol on hepatic carcinogenesis and cirrhosis in A X C rats fed N-2-fluorenyldiacetamide. J Natl Cancer Inst. 1962 Nov;29:933–943. [PubMed] [Google Scholar]
- Ranke M. B., Stanley C. A., Rodbard D., Baker L., Bongiovanni A., Parks J. S. Sex differences in binding of human growth hormone to isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1976 Mar;73(3):847–851. doi: 10.1073/pnas.73.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ranke M. B., Stanley C. A., Tenore A., Rodbard D., Bongiovanni A. M., Parks J. S. Characterization of somatogenic and lactogenic binding sites in isolated rat hepatocytes. Endocrinology. 1976 Oct;99(4):1033–1045. doi: 10.1210/endo-99-4-1033. [DOI] [PubMed] [Google Scholar]
- SYMEONIDIS A. Tumors induced by 2-acetylaminofluorene in virgin and breeding females of five strains of rats and in their offspring. J Natl Cancer Inst. 1954 Dec;15(3):539–549. [PubMed] [Google Scholar]
- Schillinger E., Gerhards E. Effects of pituitary hormones and corticosterone on lipolysis in hypophysectomized rats. Acta Endocrinol (Copenh) 1974 Nov;77(3):502–508. doi: 10.1530/acta.0.0770502. [DOI] [PubMed] [Google Scholar]
- Shirasu Y., Grantham P. H., Yamamoto R. S., Weisburger J. H. Effects of pituitary hormones and prefeeding N-hydroxy-N-2-fluorenylacetamide on the metabolism of this carcinogen and on physiologic parameters. Cancer Res. 1966 Apr;26(4):600–606. [PubMed] [Google Scholar]
- Skett P., Eneroth P., Gustafsson J. A., Sonnenschein C., Stenberg A., Ahlen A. Evidence for an unidentified factor from the pituitary gland which affects the steroid metabolism in isolated hepatocytes and hepatoma cells of the rat. Mol Cell Endocrinol. 1978 May;10(3):249–262. doi: 10.1016/0303-7207(78)90040-0. [DOI] [PubMed] [Google Scholar]
- Smith R. D., Hilf R., Senior A. E. Prolactin binding to mammary gland, 7,12-dimethylbenz(a)-anthracene-induced mammary tumors, and liver in rats. Cancer Res. 1976 Oct;36(10):3726–3731. [PubMed] [Google Scholar]
- Stenberg A. Developmental, diurnal and oestrous cycle-dependent changes in the activity of liver enzymes. J Endocrinol. 1976 Feb;68(02):265–272. doi: 10.1677/joe.0.0680265. [DOI] [PubMed] [Google Scholar]
- Theeuwes F., Yum S. I. Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng. 1976 Dec;4(4):343–353. doi: 10.1007/BF02584524. [DOI] [PubMed] [Google Scholar]
- Toh Y. C. Inhibitory effect of hypothalamic lesions on liver tumor induction by N-2-fluorenylacetamide in male rats. Cancer Res. 1978 Jan;38(1):42–51. [PubMed] [Google Scholar]
- Toh Y. C. Systematic effect of testosterone on rat liver tumor induction by N-2-fluorenylacetamide. J Natl Cancer Inst. 1972 Jan;48(1):113–118. [PubMed] [Google Scholar]
- Wilson J. T. Alteration of normal development of drug metabolism by injection of growth hormone. Nature. 1970 Feb 28;225(5235):861–863. doi: 10.1038/225861a0. [DOI] [PubMed] [Google Scholar]
- Wilson J. T., Spelsberg T. C. Growth hormone and drug metabolism. Acute effects on microsomal mixed-function oxidase activities in rat liver. Biochem J. 1976 Feb 15;154(2):433–438. doi: 10.1042/bj1540433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YATES F. E., HERBST A. L., URQUHART J. Sex difference in rate of ring A reduction of delta 4-3-keto-steroids in vitro by rat liver. Endocrinology. 1958 Dec;63(6):887–902. doi: 10.1210/endo-63-6-887. [DOI] [PubMed] [Google Scholar]