Abstract
The mucosal surface of the conducting airways has specialized structures for respiratory defense. Glands secret mucus that may act as a barrier to particle penetration and participate in particle clearance. Intraepithelial irritant receptors aid in particle clearance through airway constriction and cough. The epithelium acts as a barrier to the penetration of inhaled material into the airway wall. Morphologic studies have identified the tight junctions adjoining respiratory epithelial cells as the principal barrier to passive solute translocation across the airway. New approaches have been used to study airway epithelial function. Use of excised canine trachea mounted in Ussing chambers has permitted quantitative estimates of probe molecule permeation, the correlation of permeability with bioelectric properties, and estimation of equivalent pore radii. Probe molecule diffusion across canine trachea [mean transmucosal electric potential difference (PD) = 33 mV, lumen negative] is directly related to conductance (2.9 mS/cm2) and is compatible with an equivalent pore radius of 7.5 nm. Direct measurement of tracheal PD in vivo (-29 mV) facilitates study of the genesis of the biopotential in intact animals. Measurement of the movement of HRP by radioimmunoassay has allowed correlation of the rate of probe flow across airway walls in vivo with ultrastructure. These approaches lend themselves to the study of pharmacologic and toxicologic effects on epithelial function. Antigen challenge, diethyl ether, and unfractionated cigarette smoke have been shown to increase epithelial permeability to HRP accompanied by ultrastructural evidence of tight junctional damage. Application of pharmacologic agents, e.g. amphotericin, ouabain, onto the respiratory epithelium induces similar changes in in vitro and in vivo PD. We conclude that techniques that have been used to measure permeability and transport in other epithelia may help elucidate modes of action of environmental agents on airways.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bensch K. G., Dominguez E., Liebow A. A. Absorption of intact protein molecules across the pulmonary air-tissue barrier. Science. 1967 Sep 8;157(3793):1204–1206. doi: 10.1126/science.157.3793.1204. [DOI] [PubMed] [Google Scholar]
- Bienenstock J., Rudzik O., Clancy R. L., Perey D. Y. Bronchial lymphoid tissue. Adv Exp Med Biol. 1974;45(0):47–56. doi: 10.1007/978-1-4613-4550-3_6. [DOI] [PubMed] [Google Scholar]
- Boucher R. C., Pare P. D., Gilmore N. J., Moroz L. A., Hogg J. C. Airway mucosal permeability in the Ascaris suum-sensitive rhesus monkey. J Allergy Clin Immunol. 1977 Aug;60(2):134–140. doi: 10.1016/0091-6749(77)90039-2. [DOI] [PubMed] [Google Scholar]
- Boucher R. C., Pare P. D., Hogg J. C. Relationship between airway hyperreactivity and hyperpermeability in Ascaris-sensitive monkeys. J Allergy Clin Immunol. 1979 Sep;64(3):197–201. doi: 10.1016/0091-6749(79)90095-2. [DOI] [PubMed] [Google Scholar]
- DENNIS W. H., CANOSA C., REHM W. S. Potential difference across the pyloric antrum. Am J Physiol. 1959 Jul;197(1):19–21. doi: 10.1152/ajplegacy.1959.197.1.19. [DOI] [PubMed] [Google Scholar]
- DUNNILL M. S. The pathology of asthma, with special reference to changes in the bronchial mucosa. J Clin Pathol. 1960 Jan;13:27–33. doi: 10.1136/jcp.13.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J. M. Channels in epithelial cell membranes and junctions. Fed Proc. 1978 Oct;37(12):2639–2643. [PubMed] [Google Scholar]
- Grossman M. I. Andrew Conway Ivy (1893--1978). Physiologist. 1978 Apr;21(2):11–12. [PubMed] [Google Scholar]
- Marin M. G., Davis B., Nadel J. A. Effect of acetylcholine on Cl- and Na+ fluxes across dog tracheal epithelium in vitro. Am J Physiol. 1976 Nov;231(5 Pt 1):1546–1549. doi: 10.1152/ajplegacy.1976.231.5.1546. [DOI] [PubMed] [Google Scholar]
- Michel R. P., Inoue S., Hogg J. C. Pulmonary capillary permeability to HRP in dogs: a physiological and morphological study. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jan;42(1):13–21. doi: 10.1152/jappl.1977.42.1.13. [DOI] [PubMed] [Google Scholar]
- Olver R. E., Davis B., Marin M. G., Nadel J. A. Active transport of Na+ and Cl- across the canine tracheal epithelium in vitro. Am Rev Respir Dis. 1975 Dec;112(6):811–815. doi: 10.1164/arrd.1975.112.6.811. [DOI] [PubMed] [Google Scholar]
- Pennington J. E., Reynolds H. Y. Concentrations of gentamicin and carbenicillin in bronchial secretions. J Infect Dis. 1973 Jul;128(1):63–68. doi: 10.1093/infdis/128.1.63. [DOI] [PubMed] [Google Scholar]
- Rhodes R. S., Karnovsky M. J. Loss of macromolecular barrier function associated with surgical trauma to the intestine. Lab Invest. 1971 Sep;25(3):220–229. [PubMed] [Google Scholar]
- Richardson J. B., Hogg J. C., Bouchard T., Hall D. L. Localization of antigen in experimental bronchoconstriction in guinea pigs. J Allergy Clin Immunol. 1973 Sep;52(3):172–181. doi: 10.1016/0091-6749(73)90034-1. [DOI] [PubMed] [Google Scholar]
- Richardson J., Bouchard T., Ferguson C. C. Uptake and transport of exogenous proteins by respiratory epithelium. Lab Invest. 1976 Oct;35(4):307–314. [PubMed] [Google Scholar]
- Schneeberger-Keeley E. E., Karnovsky M. J. The ultrastructural basis of alveolar-capillary membrane permeability to peroxidase used as a tracer. J Cell Biol. 1968 Jun;37(3):781–793. doi: 10.1083/jcb.37.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simani A. S., Inoue S., Hogg J. C. Penetration of the respiratory epithelium of guinea pigs following exposure to cigarette smoke. Lab Invest. 1974 Jul;31(1):75–81. [PubMed] [Google Scholar]
- Turner K. S., Powell D. W., Carney C. N., Orlando R. C., Bozymski E. M. Transmural electrical potential difference in the mammalian esophagus in vivo. Gastroenterology. 1978 Aug;75(2):286–291. [PubMed] [Google Scholar]