Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1985 Dec;64:209–217. doi: 10.1289/ehp.8564209

Free-radical chemistry of sulfite.

P Neta, R E Huie
PMCID: PMC1568601  PMID: 3830699

Abstract

The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan W. W. A method for the complete S sulfonation of cysteine residues in proteins. Biochemistry. 1968 Dec;7(12):4247–4254. doi: 10.1021/bi00852a016. [DOI] [PubMed] [Google Scholar]
  2. FRIDOVICH I., HANDLER P. Detection of free radicals generated during enzymic oxidations by the initiation of sulfite oxidation. J Biol Chem. 1961 Jun;236:1836–1840. [PubMed] [Google Scholar]
  3. FRIDOVICH I., HANDLER P. Xanthine oxidase. III. Sulfite oxidation as an ultra sensitive assay. J Biol Chem. 1958 Dec;233(6):1578–1580. [PubMed] [Google Scholar]
  4. Fujimoto S., Nakagawa T., Ishimitsu S., Ohara A. On the mechanism of inactivation of papain by bisulfite. Chem Pharm Bull (Tokyo) 1983 Mar;31(3):992–1000. doi: 10.1248/cpb.31.992. [DOI] [PubMed] [Google Scholar]
  5. Hayatsu H. Bisulfite modification of nucleic acids and their constituents. Prog Nucleic Acid Res Mol Biol. 1976;16:75–124. doi: 10.1016/s0079-6603(08)60756-4. [DOI] [PubMed] [Google Scholar]
  6. Hayatsu H., Inoue M. The oxygen-mediated reaction between 4-thiouracil derivatives and bi- sulfite. Isolation and characterization of 1-methyluracil 4-thiosulfate as an intermediate in the formation of 1-methyluracil-4-sulfonate. J Am Chem Soc. 1971 May 5;93(9):2301–2306. doi: 10.1021/ja00738a033. [DOI] [PubMed] [Google Scholar]
  7. Hayatsu H., Miller R. C., Jr The cleavage of DNA by the oxygen-dependent reaction of bisulfite. Biochem Biophys Res Commun. 1972 Jan 14;46(1):120–124. doi: 10.1016/0006-291x(72)90638-9. [DOI] [PubMed] [Google Scholar]
  8. Hayatsu H. The oxygen-catalyzed reaction between 4-thiouridine and sodium sulfite. J Am Chem Soc. 1969 Sep 24;91(20):5693–5694. doi: 10.1021/ja01048a076. [DOI] [PubMed] [Google Scholar]
  9. Huie R. E., Neta P. Oxidation of ascorbate and a tocopherol analogue by the sulfite-derived radicals SO3- and SO5-. Chem Biol Interact. 1985 Feb-Apr;53(1-2):233–238. doi: 10.1016/s0009-2797(85)80099-5. [DOI] [PubMed] [Google Scholar]
  10. Inouye B., Ikeda M., Ishida T., Ogata M., Akiyama J., Utsumi K. Participation of superoxide free radical and Mn2+ in sulfite oxidation. Toxicol Appl Pharmacol. 1978 Oct;46(1):29–38. doi: 10.1016/0041-008x(78)90134-5. [DOI] [PubMed] [Google Scholar]
  11. KLEBANOFF S. J. The sulfite-activated oxidation of reduced pyridine nucleotides by peroxidase. Biochim Biophys Acta. 1961 Mar 18;48:93–103. doi: 10.1016/0006-3002(61)90519-4. [DOI] [PubMed] [Google Scholar]
  12. Kaplan D., McJilton C., Luchtel D. Bisulfite induced lipid oxidation. Arch Environ Health. 1975 Oct;30(10):507–509. doi: 10.1080/00039896.1975.10666764. [DOI] [PubMed] [Google Scholar]
  13. Kleinman M. T. Sulfur dioxide and exercise: relationships between response and absorption in upper airways. J Air Pollut Control Assoc. 1984 Jan;34(1):32–37. doi: 10.1080/00022470.1984.10465720. [DOI] [PubMed] [Google Scholar]
  14. Lambeth D. O., Palmer G. The kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite. J Biol Chem. 1973 Sep 10;248(17):6095–6103. [PubMed] [Google Scholar]
  15. Mayhew S. G., Abels R., Platenkamp R. The production of dithionite and SO2 - by chemical reaction of (BI) sulphite with methyl viologen semiquinone. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1397–1403. doi: 10.1016/s0006-291x(77)80134-4. [DOI] [PubMed] [Google Scholar]
  16. Mayhew S. G. The redox potential of dithionite and SO-2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. Eur J Biochem. 1978 Apr 17;85(2):535–547. doi: 10.1111/j.1432-1033.1978.tb12269.x. [DOI] [PubMed] [Google Scholar]
  17. Mottley C., Mason R. P., Chignell C. F., Sivarajah K., Eling T. E. The formation of sulfur trioxide radical anion during the prostaglandin hydroperoxidase-catalyzed oxidation of bisulfite (hydrated sulfur dioxide). J Biol Chem. 1982 May 10;257(9):5050–5055. [PubMed] [Google Scholar]
  18. Mottley C., Trice T. B., Mason R. P. Direct detection of the sulfur trioxide radical anion during the horseradish peroxidase-hydrogen peroxide oxidation of sulfite (aqueous sulfur dioxide). Mol Pharmacol. 1982 Nov;22(3):732–737. [PubMed] [Google Scholar]
  19. Schachter E. N., Witek T. J., Jr, Beck G. J., Hosein H. B., Colice G., Leaderer B. P., Cain W. Airway effects of low concentrations of sulfur dioxide: dose-response characteristics. Arch Environ Health. 1984 Jan-Feb;39(1):34–42. doi: 10.1080/00039896.1984.10545831. [DOI] [PubMed] [Google Scholar]
  20. Schuler R. H. Oxidation of ascorbate anion by electron transfer to phenoxyl radicals. Radiat Res. 1977 Mar;69(3):417–433. [PubMed] [Google Scholar]
  21. Yang S. F. Destruction of tryptophan during the aerobic oxidation of sulfite ions. Environ Res. 1973 Dec;6(4):395–402. doi: 10.1016/0013-9351(73)90055-8. [DOI] [PubMed] [Google Scholar]
  22. Yang S. F. Sulfoxide formation from methionine or its sulfide analogs during aerobic oxidation of sulfite. Biochemistry. 1970 Dec 8;9(25):5008–5014. doi: 10.1021/bi00827a027. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES