Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1985 Dec;64:219–232. doi: 10.1289/ehp.8564219

Free-radical-mediated DNA binding.

P J O'Brien
PMCID: PMC1568602  PMID: 3007090

Abstract

Free-radical metabolites can be generated metabolically by a one-electron reductase-catalyzed reaction or a "peroxidase" catalyzed oxidation or by photoactivation of a wide variety of aromatic xenobiotics. Radicals may also be generated during lipid peroxidation. Some radicals can react with DNA or bind covalently or noncovalently as a dismutation product or as a dimer, trimer or polymeric product. Modification to the DNA can result in single-strand breaks, loss of template activity, and crosslinking. The binding can prevent enzymic digestion. In some cases, the radicals react with oxygen, resulting before conversion to DNA reactive oxygen species. Most radicals probably do not interact with DNA.

Full text

PDF
219

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams G. E., Jameson D. G. Time effects in molecular radiation biology. Radiat Environ Biophys. 1980 Feb;17(2):95–113. doi: 10.1007/BF02027847. [DOI] [PubMed] [Google Scholar]
  2. Akasaka K., Dearman H. H. Charge effect on the interaction of free radicals from phenazine methosulfate with deoxyribonucleic acid. Biochemistry. 1971 Jan 5;10(1):178–185. doi: 10.1021/bi00777a026. [DOI] [PubMed] [Google Scholar]
  3. Ames B. N., Kammen H. O., Yamasaki E. Hair dyes are mutagenic: identification of a variety of mutagenic ingredients. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2423–2427. doi: 10.1073/pnas.72.6.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Antonini I., Lin T. S., Cosby L. A., Dai Y. R., Sartorelli A. C. 2- and 6-methyl-1,4-naphthoquinone derivatives and potential bioreductive alkylating agents. J Med Chem. 1982 Jun;25(6):730–735. doi: 10.1021/jm00348a023. [DOI] [PubMed] [Google Scholar]
  5. Auclair C., Meunier B., Paoletti C. Peroxidase-catalysed covalent binding of the antitumor drug 2N-methyl-9-hydroxy-ellipticine to proteins. Biochem Pharmacol. 1983 Dec 15;32(24):3883–3886. doi: 10.1016/0006-2952(83)90170-3. [DOI] [PubMed] [Google Scholar]
  6. Auclair C., Paoletti C. Bioactivation of the antitumor drugs 9-hydroxyellipticine and derivatives by a peroxidase-hydrogen peroxide system. J Med Chem. 1981 Mar;24(3):289–295. doi: 10.1021/jm00135a010. [DOI] [PubMed] [Google Scholar]
  7. Augusto O., Faljoni-Alário A., Leite L. C., Nóbrega F. G. DNA strand scission by the carbon radical derived from 2-phenyl-ethylhydrazine metabolism. Carcinogenesis. 1984 Jun;5(6):781–784. doi: 10.1093/carcin/5.6.781. [DOI] [PubMed] [Google Scholar]
  8. Bachur N. R., Gordon S. L., Gee M. V. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res. 1978 Jun;38(6):1745–1750. [PubMed] [Google Scholar]
  9. Basu A. K., Marnett L. J., Romano L. J. Dissociation of malondialdehyde mutagenicity in Salmonella typhimurium from its ability to induce interstrand DNA cross-links. Mutat Res. 1984 Oct;129(1):39–46. doi: 10.1016/0027-5107(84)90121-0. [DOI] [PubMed] [Google Scholar]
  10. Bates D. A., Winterbourn C. C. Deoxyribose breakdown by the adriamycin semiquinone and H2O2: evidence for hydroxyl radical participation. FEBS Lett. 1982 Aug 16;145(1):137–142. doi: 10.1016/0014-5793(82)81222-2. [DOI] [PubMed] [Google Scholar]
  11. Beland F. A., Beranek D. T., Dooley K. L., Heflich R. H., Kadlubar F. F. Arylamine-DNA adducts in vitro and in vivo: their role in bacterial mutagenesis and urinary bladder carcinogenesis. Environ Health Perspect. 1983 Mar;49:125–134. doi: 10.1289/ehp.8349125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blake A., Peacocke A. R. The interaction of aminocridines with nucleic acids. Biopolymers. 1968;6(9):1225–1253. doi: 10.1002/bip.1968.360060902. [DOI] [PubMed] [Google Scholar]
  13. Boyd J. A., Barrett J. C., Eling T. E. Prostaglandin endoperoxide synthetase-dependent cooxidation of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene in C3H/10T 1/2 clone 8 cells. Cancer Res. 1982 Jul;42(7):2628–2632. [PubMed] [Google Scholar]
  14. Boyd J. A., Eling T. E. Evidence for a one-electron mechanism of 2-aminofluorene oxidation by prostaglandin H synthase and horseradish peroxidase. J Biol Chem. 1984 Nov 25;259(22):13885–13896. [PubMed] [Google Scholar]
  15. Brawn K., Fridovich I. DNA strand scission by enzymically generated oxygen radicals. Arch Biochem Biophys. 1981 Feb;206(2):414–419. doi: 10.1016/0003-9861(81)90108-9. [DOI] [PubMed] [Google Scholar]
  16. Burger R. M., Berkowitz A. R., Peisach J., Horwitz S. B. Origin of malondialdehyde from DNA degraded by Fe(II) x bleomycin. J Biol Chem. 1980 Dec 25;255(24):11832–11838. [PubMed] [Google Scholar]
  17. Cerniglia C. E., Freeman J. P., Franklin W., Pack L. D. Metabolism of benzidine and benzidine-congener based dyes by human, monkey and rat intestinal bacteria. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1224–1229. doi: 10.1016/s0006-291x(82)80128-9. [DOI] [PubMed] [Google Scholar]
  18. Chaires J. B., Dattagupta N., Crothers D. M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry. 1982 Aug 17;21(17):3933–3940. doi: 10.1021/bi00260a005. [DOI] [PubMed] [Google Scholar]
  19. Cohen A. M., Aberdroth R. E., Hochstein P. Inhibition of free radical-induced DNA damage by uric acid. FEBS Lett. 1984 Aug 20;174(1):147–150. doi: 10.1016/0014-5793(84)81094-7. [DOI] [PubMed] [Google Scholar]
  20. Coles B., Srai S. K., Waynforth H. B., Ketterer B. The major role of glutathione in the metabolism and excretion of N,N-dimethyl-4-aminoazobenzene in the rat. Chem Biol Interact. 1983 Dec;47(3):307–323. doi: 10.1016/0009-2797(83)90166-7. [DOI] [PubMed] [Google Scholar]
  21. Decuyper J., Piette J., Lopez M., Merville M. P., van De Vorst A. Induction of breaks in deoxyribonucleic acid by photoexcited promazine derivatives. Biochem Pharmacol. 1984 Dec 15;33(24):4025–4031. doi: 10.1016/0006-2952(84)90016-9. [DOI] [PubMed] [Google Scholar]
  22. Degen G. H., Eling T. E., McLachlan J. A. Oxidative metabolism of diethylstilbestrol by prostaglandin synthetase. Cancer Res. 1982 Mar;42(3):919–923. [PubMed] [Google Scholar]
  23. Demple B., Linn S. 5,6-Saturated thymine lesions in DNA: production by ultraviolet light or hydrogen peroxide. Nucleic Acids Res. 1982 Jun 25;10(12):3781–3789. doi: 10.1093/nar/10.12.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Docampo R., Moreno S. N., Muniz R. P., Cruz F. S., Mason R. P. Light-enhanced free radical formation and trypanocidal action of gentian violet (crystal violet). Science. 1983 Jun 17;220(4603):1292–1295. doi: 10.1126/science.6304876. [DOI] [PubMed] [Google Scholar]
  25. Eling T., Boyd J., Reed G., Mason R., Sivarajah K. Xenobiotic metabolism by prostaglandin endoperoxide synthetase. Drug Metab Rev. 1983;14(5):1023–1053. doi: 10.3109/03602538308991420. [DOI] [PubMed] [Google Scholar]
  26. Eliot H., Gianni L., Myers C. Oxidative destruction of DNA by the adriamycin-iron complex. Biochemistry. 1984 Feb 28;23(5):928–936. doi: 10.1021/bi00300a021. [DOI] [PubMed] [Google Scholar]
  27. Emerit I., Keck M., Levy A., Feingold J., Michelson A. M. Activated oxygen species at the origin of chromosome breakage and sister-chromatid exchanges. Mutat Res. 1982 Feb;103(2):165–172. doi: 10.1016/0165-7992(82)90024-0. [DOI] [PubMed] [Google Scholar]
  28. Freese E., Sklarow S., Freese E. B. DNA damage caused by antidepressant hydrazines and related drugs. Mutat Res. 1968 May-Jun;5(3):343–348. doi: 10.1016/0027-5107(68)90004-3. [DOI] [PubMed] [Google Scholar]
  29. Friedman J., Cerutti P. The induction of ornithine decarboxylase by phorbol 12-myristate 13-acetate or by serum is inhibited by antioxidants. Carcinogenesis. 1983 Nov;4(11):1425–1427. doi: 10.1093/carcin/4.11.1425. [DOI] [PubMed] [Google Scholar]
  30. Fujita H., Hayashi H., Suzuki K. Spectrofluorometric study on photochemical interaction between chlorpromazine and nucleic acids. Photochem Photobiol. 1981 Jul;34(1):101–105. doi: 10.1111/j.1751-1097.1981.tb08968.x. [DOI] [PubMed] [Google Scholar]
  31. Garner R. C. Testing of some benzidine analogues for microsomal activation to bacterial mutagens. Cancer Lett. 1975 Sep;1(1):39–42. doi: 10.1016/s0304-3835(75)94960-5. [DOI] [PubMed] [Google Scholar]
  32. Ghoshal A. K., Farber E. The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis. 1984 Oct;5(10):1367–1370. doi: 10.1093/carcin/5.10.1367. [DOI] [PubMed] [Google Scholar]
  33. Gray P. J., Phillips D. R., Wedd A. G. Photosensitized degradation of DNA by daunomycin. Photochem Photobiol. 1982 Jul;36(1):49–57. doi: 10.1111/j.1751-1097.1982.tb04339.x. [DOI] [PubMed] [Google Scholar]
  34. Gutteridge J. M. Lipid peroxidation and possible hydroxyl radical formation stimulated by the self-reduction of a doxorubicin-iron (III) complex. Biochem Pharmacol. 1984 Jun 1;33(11):1725–1728. doi: 10.1016/0006-2952(84)90340-x. [DOI] [PubMed] [Google Scholar]
  35. Gutteridge J. M., Quinlan G. J., Wilkins S. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals. FEBS Lett. 1984 Feb 13;167(1):37–41. doi: 10.1016/0014-5793(84)80828-5. [DOI] [PubMed] [Google Scholar]
  36. Haley T. J. Benzidine revisited: a review of the literature and problems associated with the use of benzidine and its congeners. Clin Toxicol. 1975;8(1):13–42. doi: 10.3109/15563657508988044. [DOI] [PubMed] [Google Scholar]
  37. Halliwell B., Gutteridge J. M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981 Jun 15;128(2):347–352. doi: 10.1016/0014-5793(81)80114-7. [DOI] [PubMed] [Google Scholar]
  38. Hariharan P. V., Courtney J., Eleczko S. Production of hydroxyl radicals in cell systems exposed to haematoporphyrin and red light. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 Jun;37(6):691–694. [PubMed] [Google Scholar]
  39. Houba-Hérin N., Calberg-Bacq C. M., Van de Vorst A. Photodynamic activity of acridine orange: peroxide radical induction in DNA and synthetic polynucleotides. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 May;45(5):487–495. doi: 10.1080/09553008414550691. [DOI] [PubMed] [Google Scholar]
  40. Howard P. C., Beland F. A. Xanthine oxidase catalyzed binding of 1-nitropyrene to DNA. Biochem Biophys Res Commun. 1982 Jan 29;104(2):727–732. doi: 10.1016/0006-291x(82)90697-0. [DOI] [PubMed] [Google Scholar]
  41. Inouye S. Site-specific cleavage of double-strand DNA by hydroperoxide of linoleic acid. FEBS Lett. 1984 Jul 9;172(2):231–234. doi: 10.1016/0014-5793(84)81131-x. [DOI] [PubMed] [Google Scholar]
  42. Ishizu K., Dearman H. H., Huang M. T., White J. R. Interaction of the 5-methylphenazinium cation radical with deoxyribonucleic acid. Biochemistry. 1969 Mar;8(3):1238–1246. doi: 10.1021/bi00831a059. [DOI] [PubMed] [Google Scholar]
  43. Josephy P. D., Iwaniw D. C. Identification of the N-acetylcysteine conjugate of benzidine formed in the peroxidase activation system. Carcinogenesis. 1985 Jan;6(1):155–158. doi: 10.1093/carcin/6.1.155. [DOI] [PubMed] [Google Scholar]
  44. Josephy P. D., Weerasooriya M. Azo dyes based on 3,5,3',5'-tetramethylbenzidine: potential substitutes for carcinogenic azo dyes. Chem Biol Interact. 1984 May;49(3):375–382. doi: 10.1016/0009-2797(84)90110-8. [DOI] [PubMed] [Google Scholar]
  45. Kadlubar F. F., Frederick C. B., Weis C. C., Zenser T. V. Prostaglandin endoperoxide synthetase-mediated metabolism of carcinogenic aromatic amines and their binding to DNA and protein. Biochem Biophys Res Commun. 1982 Sep 16;108(1):253–258. doi: 10.1016/0006-291x(82)91859-9. [DOI] [PubMed] [Google Scholar]
  46. Kadlubar F. F., Miller J. A., Miller E. C. Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res. 1977 Mar;37(3):805–814. [PubMed] [Google Scholar]
  47. Kasai H., Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 1984 Feb 24;12(4):2137–2145. doi: 10.1093/nar/12.4.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kennedy K. A., Sligar S. G., Polomski L., Sartorelli A. C. Metabolic activation of mitomycin C by liver microsomes and nuclei. Biochem Pharmacol. 1982 Jun 1;31(11):2011–2016. doi: 10.1016/0006-2952(82)90414-2. [DOI] [PubMed] [Google Scholar]
  49. Kennelly J. C., Hertzog P. J., Martin C. N. The release of 4,4'-diaminobiphenyls from azodyes in the rat. Carcinogenesis. 1982;3(8):947–951. doi: 10.1093/carcin/3.8.947. [DOI] [PubMed] [Google Scholar]
  50. Kessel D. Hematoporphyrin and HPD: photophysics, photochemistry and phototherapy. Photochem Photobiol. 1984 Jun;39(6):851–859. doi: 10.1111/j.1751-1097.1984.tb08871.x. [DOI] [PubMed] [Google Scholar]
  51. Knight R. C., Rowley D. A., Skolimowski I., Edwards D. I. Mechanism of action of nitroimidazole antimicrobial and antitumour radiosensitizing drugs. Effects of reduced misonidazole on DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 1979 Oct;36(4):367–377. doi: 10.1080/09553007914551151. [DOI] [PubMed] [Google Scholar]
  52. Komiyama T., Kikuchi T., Sugiura Y. Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase. Biochem Pharmacol. 1982 Nov 15;31(22):3651–3656. doi: 10.1016/0006-2952(82)90590-1. [DOI] [PubMed] [Google Scholar]
  53. Kozumbo W. J., Seed J. L., Kensler T. W. Inhibition by 2(3)-tert-butyl-4-hydroxyanisole and other antioxidants of epidermal ornithine decarboxylase activity induced by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1983 Jun;43(6):2555–2559. [PubMed] [Google Scholar]
  54. Kuo M. T. Preferential damage of active chromatin by bleomycin. Cancer Res. 1981 Jun;41(6):2439–2443. [PubMed] [Google Scholar]
  55. LaRusso N. F., Tomasz M., Müller M., Lipman R. Interaction of metronidazole with nucleic acids in vitro. Mol Pharmacol. 1977 Sep;13(5):872–882. [PubMed] [Google Scholar]
  56. Lawrence N. J., Parkinson E. K., Emmerson A. Benzoyl peroxide interferes with metabolic co-operation between cultured human epidermal keratinocytes. Carcinogenesis. 1984 Mar;5(3):419–421. doi: 10.1093/carcin/5.3.419. [DOI] [PubMed] [Google Scholar]
  57. Le Pecq J. B., Le Bret M., Barbet J., Roques B. DNA polyintercalating drugs: DNA binding of diacridine derivatives. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2915–2919. doi: 10.1073/pnas.72.8.2915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Levin D. E., Lovely T. J., Klekowski E. Light-enhanced genetic toxicity of crystal violet. Mutat Res. 1982 Mar;103(3-6):283–288. doi: 10.1016/0165-7992(82)90055-0. [DOI] [PubMed] [Google Scholar]
  59. Li J. J., Li S. A., Klicka J. K., Parsons J. A., Lam L. K. Relative carcinogenic activity of various synthetic and natural estrogens in the Syrian hamster kidney. Cancer Res. 1983 Nov;43(11):5200–5204. [PubMed] [Google Scholar]
  60. Liehr J. G. 2-Fluoroestradiol. Separation of estrogenicity from carcinogenicity. Mol Pharmacol. 1983 Mar;23(2):278–281. [PubMed] [Google Scholar]
  61. Liehr J. G., DaGue B. B., Ballatore A. M., Henkin J. Diethylstilbestrol (DES) quinone: a reactive intermediate in DES metabolism. Biochem Pharmacol. 1983 Dec 15;32(24):3711–3718. doi: 10.1016/0006-2952(83)90139-9. [DOI] [PubMed] [Google Scholar]
  62. Lown J. W., Sim S. K., Majumdar K. C., Chang R. Y. Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents. Biochem Biophys Res Commun. 1977 Jun 6;76(3):705–710. doi: 10.1016/0006-291x(77)91557-1. [DOI] [PubMed] [Google Scholar]
  63. MILLER E. C., MILLER J. A., HARTMANN H. A. N-Hydroxy-2-acetylaminofluorene: a metabolite of 2-acetylaminofluorene with increased carcinogenic activity in the rat. Cancer Res. 1961 Jul;21:815–824. [PubMed] [Google Scholar]
  64. Malejka-Giganti D., Ritter C. L., Ryzewski C. N. Pathobiologic and metabolic aspects of mammary gland tumorigenesis by N-substituted aryl compounds. Environ Health Perspect. 1983 Mar;49:175–183. doi: 10.1289/ehp.8349175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Martin C. N., Beland F. A., Kennelly J. C., Kadlubar F. F. Binding of benzidine, N-acetylbenzidine, N, N'-diacetylbenzidine and Direct Blue 6 to rat liver DNA. Environ Health Perspect. 1983 Mar;49:101–106. doi: 10.1289/ehp.8349101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Martin C. N., Beland F. A., Roth R. W., Kadlubar F. F. Covalent binding of benzidine and N-acetylbenzidine to DNA at the C-8 atom of deoxyguanosine in vivo and in vitro. Cancer Res. 1982 Jul;42(7):2678–2686. [PubMed] [Google Scholar]
  67. Meredith M. J., Reed D. J. Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Biochem Pharmacol. 1983 Apr 15;32(8):1383–1388. doi: 10.1016/0006-2952(83)90451-3. [DOI] [PubMed] [Google Scholar]
  68. Metzler M., Epe B. Peroxidase-mediated binding of diethylstilbestrol analogs to DNA in vitro: a possible role for a phenoxy radical. Chem Biol Interact. 1984 Aug;50(3):351–360. doi: 10.1016/0009-2797(84)90042-5. [DOI] [PubMed] [Google Scholar]
  69. Metzler M., McLachlan J. A. Peroxidase-mediated oxidation, a possible pathway for metabolic activation of diethylstilbestrol. Biochem Biophys Res Commun. 1978 Dec 14;85(3):874–884. doi: 10.1016/0006-291x(78)90625-3. [DOI] [PubMed] [Google Scholar]
  70. Miller E. C., Miller J. A. Mechanisms of chemical carcinogenesis. Cancer. 1981 Mar 1;47(5 Suppl):1055–1064. doi: 10.1002/1097-0142(19810301)47:5+<1055::aid-cncr2820471302>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  71. Mimnaugh E. G., Trush M. A., Gram T. E. Stimulation by adriamycin of rat heart and liver microsomal NADPH-dependent lipid peroxidation. Biochem Pharmacol. 1981 Oct;30(20):2797–2804. doi: 10.1016/0006-2952(81)90417-2. [DOI] [PubMed] [Google Scholar]
  72. Morrison H., Jernström B., Nordenskjöld M., Thor H., Orrenius S. Induction of DNA damage by menadione (2-methyl-1,4-naphthoquinone) in primary cultures of rat hepatocytes. Biochem Pharmacol. 1984 Jun 1;33(11):1763–1769. doi: 10.1016/0006-2952(84)90347-2. [DOI] [PubMed] [Google Scholar]
  73. Muindi J. R., Sinha B. K., Gianni L., Myers C. E. Hydroxyl radical production and DNA damage induced by anthracycline-iron complex. FEBS Lett. 1984 Jul 9;172(2):226–230. doi: 10.1016/0014-5793(84)81130-8. [DOI] [PubMed] [Google Scholar]
  74. Myers C. E., Gianni L., Simone C. B., Klecker R., Greene R. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry. 1982 Apr 13;21(8):1707–1712. doi: 10.1021/bi00537a001. [DOI] [PubMed] [Google Scholar]
  75. Müller W., Crothers D. M. Interactions of heteroaromatic compounds with nucleic acids. 1. The influence of heteroatoms and polarizability on the base specificity of intercalating ligands. Eur J Biochem. 1975 May;54(1):267–277. doi: 10.1111/j.1432-1033.1975.tb04137.x. [DOI] [PubMed] [Google Scholar]
  76. Müller W., Gautier F. Interactions of heteroaromatic compounds with nucleic acids. A - T-specific non-intercalating DNA ligands. Eur J Biochem. 1975 Jun;54(2):385–394. doi: 10.1111/j.1432-1033.1975.tb04149.x. [DOI] [PubMed] [Google Scholar]
  77. Ozols R. F., Hogan W. M., Ostchega Y., Young R. C. MVP (mitomycin, vinblastine, and progesterone): a second-line regimen in ovarian cancer with a high incidence of pulmonary toxicity. Cancer Treat Rep. 1983 Jul-Aug;67(7-8):721–722. [PubMed] [Google Scholar]
  78. Pan S. S., Andrews P. A., Glover C. J., Bachur N. R. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase. J Biol Chem. 1984 Jan 25;259(2):959–966. [PubMed] [Google Scholar]
  79. Piette J., Moore P. D. DNA synthesis on phi X174 template damaged by proflavine and light treatment. Photochem Photobiol. 1982 May;35(5):705–708. doi: 10.1111/j.1751-1097.1982.tb02633.x. [DOI] [PubMed] [Google Scholar]
  80. Pollakis G., Goormaghtigh E., Ruysschaert J. M. Role of the quinone structure in the mitochondrial damage induced by antitumor anthracyclines. Comparison of adriamycin and 5-iminodaunorubicin. FEBS Lett. 1983 May 8;155(2):267–272. doi: 10.1016/0014-5793(82)80618-2. [DOI] [PubMed] [Google Scholar]
  81. Porumb T., Slade E. F. Electron-spin-resonance studies of a chlorpromazine derivative bound to DNA fibres. Eur J Biochem. 1976 May 17;65(1):21–24. doi: 10.1111/j.1432-1033.1976.tb10384.x. [DOI] [PubMed] [Google Scholar]
  82. Reddy J. K., Lalwai N. D. Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. Crit Rev Toxicol. 1983;12(1):1–58. doi: 10.3109/10408448309029317. [DOI] [PubMed] [Google Scholar]
  83. Robbie M., Wilkins R. J. Identification of the specific sites of interaction between intercalating drugs and DNA. Chem Biol Interact. 1984 Apr;49(1-2):189–207. doi: 10.1016/0009-2797(84)90061-9. [DOI] [PubMed] [Google Scholar]
  84. Rogan E. G., Hakam A., Cavalieri E. L. Structure elucidation of a 6-methylbenzo[a]pyrene-DNA adduct formed by horseradish peroxidase in vitro and mouse skin in vivo. Chem Biol Interact. 1983 Oct 15;47(1):111–122. doi: 10.1016/0009-2797(83)90151-5. [DOI] [PubMed] [Google Scholar]
  85. Rushmore T. H., Lim Y. P., Farber E., Ghoshal A. K. Rapid lipid peroxidation in the nuclear fraction of rat liver induced by a diet deficient in choline and methionine. Cancer Lett. 1984 Oct;24(3):251–255. doi: 10.1016/0304-3835(84)90020-x. [DOI] [PubMed] [Google Scholar]
  86. Rushmore T., Snyder R., Kalf G. Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria in vitro. Chem Biol Interact. 1984 Apr;49(1-2):133–154. doi: 10.1016/0009-2797(84)90057-7. [DOI] [PubMed] [Google Scholar]
  87. Sackett P. H., Mayausky J. S., Smith T., Kalus S., McCreery R. L. Side-chain effects on phenothiazine cation radical reactions. J Med Chem. 1981 Nov;24(11):1342–1347. doi: 10.1021/jm00143a016. [DOI] [PubMed] [Google Scholar]
  88. Saucin M. Mechanisms of photosensitization by phenothiazine derivatives [proceedings]. Arch Int Physiol Biochim. 1979 Dec;87(5):1051–1052. [PubMed] [Google Scholar]
  89. Sawahata T., Neal R. A. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes. Mol Pharmacol. 1983 Mar;23(2):453–460. [PubMed] [Google Scholar]
  90. Shires T. K. Iron-induced DNA damage and synthesis in isolated rat liver nuclei. Biochem J. 1982 Aug 1;205(2):321–329. doi: 10.1042/bj2050321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Sinha B. K. Enzymatic activation of hydrazine derivatives. A spin-trapping study. J Biol Chem. 1983 Jan 25;258(2):796–801. [PubMed] [Google Scholar]
  92. Sinha B. K., Gregory J. L. Role of one-electron and two-electron reduction products of adriamycin and daunomycin in deoxyribonucleic acid binding. Biochem Pharmacol. 1981 Sep 15;30(18):2626–2629. doi: 10.1016/0006-2952(81)90594-3. [DOI] [PubMed] [Google Scholar]
  93. Sivarajah K., Jones K. G., Fouts J. R., Devereux T., Shirley J. E., Eling T. E. Prostaglandin synthetase and cytochrome P-450-dependent metabolism of (+/-)benzo(a)pyrene 7,8-dihydrodiol by enriched populations of rat Clara cells and alveolar type II cells. Cancer Res. 1983 Jun;43(6):2632–2636. [PubMed] [Google Scholar]
  94. Speck W. T., Rosenkranz H. S. Proflavin: an unusual mutagen. Mutat Res. 1980 Jan;77(1):37–43. doi: 10.1016/0165-1218(80)90118-4. [DOI] [PubMed] [Google Scholar]
  95. Subrahmanyam V. V., O'Brien P. J. Peroxidase-catalysed binding of [U-14C]phenol to DNA. Xenobiotica. 1985 Oct;15(10):859–871. doi: 10.3109/00498258509045037. [DOI] [PubMed] [Google Scholar]
  96. Sugioka K., Nakano M. Mechanism of phospholipid peroxidation induced by ferric ion-ADP-adriamycin-co-ordination complex. Biochim Biophys Acta. 1982 Nov 12;713(2):333–343. [PubMed] [Google Scholar]
  97. Summerfield F. W., Tappel A. L. Cross-linking of DNA in liver and testes of rats fed 1,3-propanediol. Chem Biol Interact. 1984 Jun;50(1):87–96. doi: 10.1016/0009-2797(84)90134-0. [DOI] [PubMed] [Google Scholar]
  98. Summerfield F. W., Tappel A. L. Determination by fluorescence quenching of the environment of DNA crosslinks made by malondialdehyde. Biochim Biophys Acta. 1983 Jun 24;740(2):185–189. doi: 10.1016/0167-4781(83)90076-3. [DOI] [PubMed] [Google Scholar]
  99. Swaminathan S., Lower G. M., Jr, Bryan G. T. Nitroreductase-mediated metabolic activation of 2-amino-4-(5-nitro-2-furyl)thiazole and binding to nucleic acids and proteins. Cancer Res. 1982 Nov;42(11):4479–4484. [PubMed] [Google Scholar]
  100. Takanaka K., O'Brien P. J., Tsuruta Y., Rahimtula A. D. Tumor promoter stimulated irreversible binding of N-methylaminoazobenzene to polymorphonuclear leukocyte DNA. Cancer Lett. 1982 Mar-Apr;15(3):311–315. doi: 10.1016/0304-3835(82)90132-x. [DOI] [PubMed] [Google Scholar]
  101. Tanizawa H., Sazuka Y., Takino Y. Change of lipid peroxide levels in mouse organs after adriamycin administration. Chem Pharm Bull (Tokyo) 1983 May;31(5):1714–1718. doi: 10.1248/cpb.31.1714. [DOI] [PubMed] [Google Scholar]
  102. Tatsumi K., Kitamura S., Yoshimura H. Binding of nitrofuran derivatives to nucleic acids and protein. Chem Pharm Bull (Tokyo) 1977 Nov;25(11):2948–2952. doi: 10.1248/cpb.25.2948. [DOI] [PubMed] [Google Scholar]
  103. Thor H., Smith M. T., Hartzell P., Bellomo G., Jewell S. A., Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982 Oct 25;257(20):12419–12425. [PubMed] [Google Scholar]
  104. Triton T. R., Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science. 1982 Jul 16;217(4556):248–250. doi: 10.1126/science.7089561. [DOI] [PubMed] [Google Scholar]
  105. Trush M. A., Mimnaugh E. G., Ginsburg E., Gram T. E. Studies on the interaction of bleomycin A2 with rat lung microsomes. II. Involvement of adventitious iron and reactive oxygen in bleomycin-mediated DNA chain breakage. J Pharmacol Exp Ther. 1982 Apr;221(1):159–165. [PubMed] [Google Scholar]
  106. Tsuruta Y., Josephy P. D., Rahimtula A. D., O'Brien P. J. Peroxidase-catalyzed benzidine binding to DNA and other macromolecules. Chem Biol Interact. 1985 Jul;54(2):143–158. doi: 10.1016/s0009-2797(85)80159-9. [DOI] [PubMed] [Google Scholar]
  107. Tsuruta Y., Subrahmanyam V. V., Marshall W., O'Brien P. J. Peroxidase-mediated irreversible binding of arylamine carcinogens to DNA in intact polymorphonuclear leukocytes activated by a tumor promoter. Chem Biol Interact. 1985 Feb-Apr;53(1-2):25–35. doi: 10.1016/s0009-2797(85)80081-8. [DOI] [PubMed] [Google Scholar]
  108. Waring M. J. DNA modification and cancer. Annu Rev Biochem. 1981;50:159–192. doi: 10.1146/annurev.bi.50.070181.001111. [DOI] [PubMed] [Google Scholar]
  109. Weitberg A. B., Weitzman S. A., Destrempes M., Latt S. A., Stossel T. P. Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells. N Engl J Med. 1983 Jan 6;308(1):26–30. doi: 10.1056/NEJM198301063080107. [DOI] [PubMed] [Google Scholar]
  110. Wilkins R. J. Selective binding of actinomycin D and distamycin A to DNA. Nucleic Acids Res. 1982 Nov 25;10(22):7273–7282. doi: 10.1093/nar/10.22.7273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Wise R. W., Zenser T. V., Davis B. B. Prostaglandin H synthase oxidation of benzidine and o-dianisidine: reduction and conjugation of activated amines by thiols. Carcinogenesis. 1985 Apr;6(4):579–583. doi: 10.1093/carcin/6.4.579. [DOI] [PubMed] [Google Scholar]
  112. Wise R. W., Zenser T. V., Kadlubar F. F., Davis B. B. Metabolic activation of carcinogenic aromatic amines by dog bladder and kidney prostaglandin H synthase. Cancer Res. 1984 May;44(5):1893–1897. [PubMed] [Google Scholar]
  113. Wu J. C., Kozarich J. W., Stubbe J. The mechanism of free base formation from DNA by bleomycin. A proposal based on site specific tritium release from Poly(dA.dU). J Biol Chem. 1983 Apr 25;258(8):4694–4697. [PubMed] [Google Scholar]
  114. Yagi M. Oxidation of benzo(a)pyrene and 7,8-dihydro-7,8-dihydroxy benzo(a)pyrene by horseradish peroxidase-H2O2 intermediate: fluorometric study. Cancer Biochem Biophys. 1984 Jun;7(2):155–174. [PubMed] [Google Scholar]
  115. Zenser T. V., Palmier M. O., Mattammal M. B., Bolla R. I., Davis B. B. Comparative effects of prostaglandin H synthase-catalyzed binding of two 5-nitrofuran urinary bladder carcinogens. J Pharmacol Exp Ther. 1983 Oct;227(1):139–143. [PubMed] [Google Scholar]
  116. Zimmerman R., Cerutti P. Active oxygen acts as a promoter of transformation in mouse embryo C3H/10T1/2/C18 fibroblasts. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2085–2087. doi: 10.1073/pnas.81.7.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES