Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1985 Dec;64:111–126. doi: 10.1289/ehp.8564111

Free-radical chemistry of cigarette smoke and its toxicological implications.

D F Church, W A Pryor
PMCID: PMC1568603  PMID: 3007083

Abstract

Cigarette smoke contains two very different populations of free radicals, one in the tar and one in the gas phase. The tar phase contains several relatively stable free radicals; we have identified the principal radical as a quinone/hydroquinone (Q/QH2) complex held in the tarry matrix. We suggest that this Q/QH2 polymer is an active redox system that is capable of reducing molecular oxygen to produce superoxide, eventually leading to hydrogen peroxide and hydroxyl radicals. In addition, we have shown that the principal radical in tar reacts with DNA in vitro, possibly by covalent binding. The gas phase of cigarette smoke contains small oxygen- and carbon-centered radicals that are much more reactive than are the tar-phase radicals. These gas-phase radicals do not arise in the flame, but rather are produced in a steady state by the oxidation of NO to NO2, which then reacts with reactive species in smoke such as isoprene. We suggest that these radicals and the metastable products derived from these radical reactions may be responsible for the inactivation of alpha 1-proteinase inhibitor by fresh smoke. Cigarette smoke oxidizes thiols to disulfides; we suggest the active oxidants are NO and NO2. The effects of smoke on lipid peroxidation are complex, and this is discussed. We also discuss the toxicological implications for the radicals in smoke in terms of a number of radical-mediated disease processes, including emphysema and cancer.

Full text

PDF
111

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach O., Hammond E. C., Garfinkel L., Benante C. Relation of smoking and age to emphysema. Whole-lung section study. N Engl J Med. 1972 Apr 20;286(16):853–857. doi: 10.1056/NEJM197204202861601. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med. 1978 Mar 30;298(13):721–725. doi: 10.1056/NEJM197803302981305. [DOI] [PubMed] [Google Scholar]
  3. Bluhm A. L., Weinstein J., Sousa J. A. Free radicals in tobacco smoke. Nature. 1971 Feb 12;229(5285):500–500. doi: 10.1038/229500a0. [DOI] [PubMed] [Google Scholar]
  4. Burton G. W., Cheeseman K. H., Ingold K. U., Slater T. F. Lipid antioxidants and products of lipid peroxidation as potential tumour protective agents. Biochem Soc Trans. 1983 Jun;11(3):261–262. doi: 10.1042/bst0110261. [DOI] [PubMed] [Google Scholar]
  5. Carp H., Janoff A. In vitro suppression of serum elastase-inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes. J Clin Invest. 1979 Apr;63(4):793–797. doi: 10.1172/JCI109364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carp H., Janoff A. Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis. 1978 Sep;118(3):617–621. doi: 10.1164/arrd.1978.118.3.617. [DOI] [PubMed] [Google Scholar]
  7. Carp H., Janoff A. Potential mediator of inflammation. Phagocyte-derived oxidants suppress the elastase-inhibitory capacity of alpha 1-proteinase inhibitor in vitro. J Clin Invest. 1980 Nov;66(5):987–995. doi: 10.1172/JCI109968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carp H., Miller F., Hoidal J. R., Janoff A. Potential mechanism of emphysema: alpha 1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2041–2045. doi: 10.1073/pnas.79.6.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chow C. K. Dietary vitamin E and cellular susceptibility to cigarette smoking. Ann N Y Acad Sci. 1982;393:426–436. doi: 10.1111/j.1749-6632.1982.tb31281.x. [DOI] [PubMed] [Google Scholar]
  10. Cohen A. B., James H. L. Reduction of the elastase inhibitory capacity of alpha 1-antitrypsin by peroxides in cigarette smoke: an analysis of brands and filters. Am Rev Respir Dis. 1982 Jul;126(1):25–30. doi: 10.1164/arrd.1982.126.1.25. [DOI] [PubMed] [Google Scholar]
  11. Crippa P. R., Mazzini A. Involvement of superoxide ions in the oxidation of NADH by melanins. Physiol Chem Phys Med NMR. 1983;15(1):51–56. [PubMed] [Google Scholar]
  12. Crippa P. R., Mazzini A., Salmelli D. Oxidation of NADH by melanin: effect of UV light and copper ions. Physiol Chem Phys. 1979;11(6):491–499. [PubMed] [Google Scholar]
  13. Dooley M. M., Pryor W. A. Free radical pathology: inactivation of human alpha-1-proteinase inhibitor by products from the reaction of nitrogen dioxide with hydrogen peroxide and the etiology of emphysema. Biochem Biophys Res Commun. 1982 Jun 15;106(3):981–987. doi: 10.1016/0006-291x(82)91807-1. [DOI] [PubMed] [Google Scholar]
  14. Evans D. J., Hoskinson R. M., Mayfield R. J. Enzyme inhibition by tobacco smoke: a comparison of the effects of four filters. Arch Environ Health. 1979 Mar-Apr;34(2):103–106. doi: 10.1080/00039896.1979.10667377. [DOI] [PubMed] [Google Scholar]
  15. Felix C. C., Hyde J. S., Sarna T., Sealy R. C. Melanin photoreactions in aerated media: electron spin resonance evidence for production of superoxide and hydrogen peroxide. Biochem Biophys Res Commun. 1978 Sep 29;84(2):335–341. doi: 10.1016/0006-291x(78)90175-4. [DOI] [PubMed] [Google Scholar]
  16. Fenner M. L., Braven J. The mechanism of carcinogenesis by tobacco smoke. Further experimental evidence and a prediction from the thiol-defence hypothesis. Br J Cancer. 1968 Sep;22(3):474–479. doi: 10.1038/bjc.1968.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gadek J. E., Fells G. A., Crystal R. G. Cigarette smoking induces functional antiprotease deficiency in the lower respiratory tract of humans. Science. 1979 Dec 14;206(4424):1315–1316. doi: 10.1126/science.316188. [DOI] [PubMed] [Google Scholar]
  18. Gan E. V., Haberman H. F., Menon I. A. Oxidation of NADH by melanin and melanoproteins. Biochim Biophys Acta. 1974 Nov 25;370(1):62–69. doi: 10.1016/0005-2744(74)90031-x. [DOI] [PubMed] [Google Scholar]
  19. Green G. M. Cigarette smoke: protection of alveolar macrophages by glutathione and cysteine. Science. 1968 Nov 15;162(3855):810–811. doi: 10.1126/science.162.3855.810. [DOI] [PubMed] [Google Scholar]
  20. Hecht S. S., Carmella S., Mori H., Hoffmann D. A study of tobacco carcinogenesis. XX. Role of catechol as a major cocarcinogen in the weakly acidic fraction of smoke condensate. J Natl Cancer Inst. 1981 Jan;66(1):163–169. [PubMed] [Google Scholar]
  21. Hocking W. G., Golde D. W. The pulmonary-alveolar macrophage (second of two parts). N Engl J Med. 1979 Sep 20;301(12):639–645. doi: 10.1056/NEJM197909203011205. [DOI] [PubMed] [Google Scholar]
  22. Hunninghake G., Gadek J., Crystal R. Mechanism by which cigarette smoke attracts polymorphonuclear leukocytes to lung. Chest. 1980 Feb;77(2 Suppl):273–273. doi: 10.1378/chest.77.2_supplement.273. [DOI] [PubMed] [Google Scholar]
  23. Janoff A., Carp H., Laurent P., Raju L. The role of oxidative processes in emphysema. Am Rev Respir Dis. 1983 Feb;127(2):S31–S38. doi: 10.1164/arrd.1983.127.2P2.S31. [DOI] [PubMed] [Google Scholar]
  24. Janoff A., Carp H., Lee D. K., Drew R. T. Cigarette smoke inhalation decreases alpha 1-antitrypsin activity in rat lung. Science. 1979 Dec 14;206(4424):1313–1314. doi: 10.1126/science.316187. [DOI] [PubMed] [Google Scholar]
  25. Janoff A., Carp H. Possible mechanisms of emphysema in smokers: cigarette smoke condensate suppresses protease inhibition in vitro. Am Rev Respir Dis. 1977 Jul;116(1):65–72. doi: 10.1164/arrd.1977.116.1.65. [DOI] [PubMed] [Google Scholar]
  26. Janoff A., Dearing R. Alpha 1-proteinase inhibitor is more sensitive to inactivation by cigarette smoke than is leukocyte elastase. Am Rev Respir Dis. 1982 Oct;126(4):691–694. doi: 10.1164/arrd.1982.126.4.691. [DOI] [PubMed] [Google Scholar]
  27. Johnson D., Travis J. Structural evidence for methionine at the reactive site of human alpha-1-proteinase inhibitor. J Biol Chem. 1978 Oct 25;253(20):7142–7144. [PubMed] [Google Scholar]
  28. LANGE R. Inhibiting effect of tobacco smoke on some crystalline enzymes. Science. 1961 Jul 7;134(3471):52–53. doi: 10.1126/science.134.3471.52. [DOI] [PubMed] [Google Scholar]
  29. LYONS M. J., GIBSON J. F., INGRAM D. J. Free-radicals produced in cigarette smoke. Nature. 1958 Apr 5;181(4614):1003–1004. doi: 10.1038/1811003a0. [DOI] [PubMed] [Google Scholar]
  30. Lentz P. E., Di Luzio N. R. Peroxidation of lipids in alveolar macrophages. Production by aqueous extracts of cigarette smoke. Arch Environ Health. 1974 May;28(5):279–282. doi: 10.1080/00039896.1974.10666487. [DOI] [PubMed] [Google Scholar]
  31. Leuchtenberger C., Leuchtenberger R., Zbinden I., Schleh E. SH Reactivity of cigarette smoke and its correlation with carcinogenic effects on hamster lung cultures. Soz Praventivmed. 1976 Jan-Feb;21(1):47–50. doi: 10.1007/BF01994377. [DOI] [PubMed] [Google Scholar]
  32. Lillie R. D., Donaldson P. T., Vacca L. L., Pizzolato P. P., Jirge S. K. Reduction and azo coupling of quinones. A histochemical study of human cutaneous melanin and adrenochrome. Histochemistry. 1977 Mar 4;51(2-3):141–152. doi: 10.1007/BF00567220. [DOI] [PubMed] [Google Scholar]
  33. Matheson N. R., Wong P. S., Schuyler M., Travis J. Interaction of human alpha-1-proteinase inhibitor with neutrophil myeloperoxidase. Biochemistry. 1981 Jan 20;20(2):331–336. doi: 10.1021/bi00505a016. [DOI] [PubMed] [Google Scholar]
  34. Matheson N. R., Wong P. S., Travis J. Enzymatic inactivation of human alpha-1-proteinase inhibitor by neutrophil myeloperoxidase. Biochem Biophys Res Commun. 1979 May 28;88(2):402–409. doi: 10.1016/0006-291x(79)92062-x. [DOI] [PubMed] [Google Scholar]
  35. Nakayama T., Kodama M., Nagata C. Generation of hydrogen peroxide and superoxide anion radical from cigarette smoke. Gan. 1984 Feb;75(2):95–98. [PubMed] [Google Scholar]
  36. Powell G. M., Green G. M. Cigarette smoke--a proposed metabolic lesion in alveolar macrophages. Biochem Pharmacol. 1972 Jul 1;21(13):1785–1798. doi: 10.1016/0006-2952(72)90175-x. [DOI] [PubMed] [Google Scholar]
  37. Pryor W. A., Dooley M. M., Church D. F. Inactivation of human alpha-1-proteinase inhibitor by gas-phase cigarette smoke. Biochem Biophys Res Commun. 1984 Jul 31;122(2):676–681. doi: 10.1016/s0006-291x(84)80086-8. [DOI] [PubMed] [Google Scholar]
  38. Pryor W. A. Free radical biology: xenobiotics, cancer, and aging. Ann N Y Acad Sci. 1982;393:1–22. doi: 10.1111/j.1749-6632.1982.tb31228.x. [DOI] [PubMed] [Google Scholar]
  39. Pryor W. A., Hales B. J., Premovic P. I., Church D. F. The radicals in cigarette tar: their nature and suggested physiological implications. Science. 1983 Apr 22;220(4595):425–427. doi: 10.1126/science.6301009. [DOI] [PubMed] [Google Scholar]
  40. Pryor W. A., Prier D. G., Church D. F. Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar. Environ Health Perspect. 1983 Jan;47:345–355. doi: 10.1289/ehp.8347345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pryor W. A., Terauchi K., Davis W. H., Jr Electron spin resonance (ESR) study of cigarette smoke by use of spin trapping techniques. Environ Health Perspect. 1976 Aug;16:161–176. doi: 10.1289/ehp.7616161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schmeltz I., Tosk J., Jacobs G., Hoffmann D. Redox potential and quinone content of cigarette smoke. Anal Chem. 1977 Nov;49(13):1924–1929. doi: 10.1021/ac50021a013. [DOI] [PubMed] [Google Scholar]
  43. Slaga T. J., Klein-Szanto A. J., Triplett L. L., Yotti L. P., Trosko K. E. Skin tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound. Science. 1981 Aug 28;213(4511):1023–1025. doi: 10.1126/science.6791284. [DOI] [PubMed] [Google Scholar]
  44. Snider G. L. The pathogenesis of emphysema--twenty years of progress. Am Rev Respir Dis. 1981 Sep;124(3):321–324. doi: 10.1164/arrd.1981.124.3.321. [DOI] [PubMed] [Google Scholar]
  45. Stone P. J., Calore J. D., McGowan S. E., Bernardo J., Snider G. L., Franzblau C. Functional alpha 1-protease inhibitor in the lower respiratory tract of cigarette smokers is not decreased. Science. 1983 Sep 16;221(4616):1187–1189. doi: 10.1126/science.6612333. [DOI] [PubMed] [Google Scholar]
  46. Troll W., Witz G., Goldstein B., Stone D., Sugimura T. The role of free oxygen radicals in tumor promotion and carcinogenesis. Carcinog Compr Surv. 1982;7:593–597. [PubMed] [Google Scholar]
  47. Van Duuren B. L., Goldschmidt B. M. Cocarcinogenic and tumor-promoting agents in tobacco carcinogenesis. J Natl Cancer Inst. 1976 Jun;56(6):1237–1242. doi: 10.1093/jnci/56.6.1237. [DOI] [PubMed] [Google Scholar]
  48. Van Woert M. H. Reduced nicotinamide-adenine dinucleotide oxidation by melanin: inhibition by phenothiazines. Proc Soc Exp Biol Med. 1968 Oct;129(1):165–171. doi: 10.3181/00379727-129-33275. [DOI] [PubMed] [Google Scholar]
  49. Weinstein I. B. Evaluating substances for promotion, cofactor effects and synergy in the carcinogenic process. J Environ Pathol Toxicol. 1980 Mar;3(4 Spec No):89–101. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES