Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1985 Dec;64:127–137. doi: 10.1289/ehp.8564127

Free-radical metabolites of acetaminophen and a dimethylated derivative.

V Fischer, P R West, L S Harman, R P Mason
PMCID: PMC1568611  PMID: 3007084

Abstract

The oxidation of acetaminophen (4'-hydroxyacetanilide) to the corresponding N-acetyl-p-benzoquinone imines by plant and mammalian peroxidases is discussed. The acetaminophen free radical (N-acetyl-4-aminophenoxyl) has been reported as an intermediate. It is very reactive and forms melanin-like polymeric products. Application of a fast-flow system makes it possible to detect the transient species and clearly distinguish it from persistent paramagnetic melanin polymers. A model system, leading to more stable metabolites, can be obtained by introduction of methyl groups next to the oxygen, 3',5'-dimethylacetaminophen (3',5'-dimethyl-4'-hydroxyacetanilide). The ESR spectrum of the free radical formed could be completely analyzed and confirmed by deuterium substitution. The data are consistent with the assignment to a phenoxyl free radical (N-acetyl-2,6-dimethyl-4-amino-phenoxyl). Its formation is discussed in terms of substrate, hydrogen peroxide and enzyme concentration dependence. It is believed to be formed via a direct one-electron oxidation of 3',5'-dimethyl-4'-hydroxy-acetanilide. The radical does not form polymers or react with nucleophiles. Its redox behavior is discussed. The possible reaction of these phenoxyl free radicals with oxygen is thought to be negligible.

Full text

PDF
127

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. D., Jr, Lauterburg B. H., Mitchell J. R. Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther. 1983 Dec;227(3):749–754. [PubMed] [Google Scholar]
  2. Boyd J. A., Eling T. E. Prostaglandin endoperoxide synthetase-dependent cooxidation of acetaminophen to intermediates which covalently bind in vitro to rabbit renal medullary microsomes. J Pharmacol Exp Ther. 1981 Dec;219(3):659–664. [PubMed] [Google Scholar]
  3. Boyer T. D., Rouff S. L. Acetaminophen-induced hepatic necrosis and renal failure. JAMA. 1971 Oct 18;218(3):440–441. [PubMed] [Google Scholar]
  4. Dahlin D. C., Miwa G. T., Lu A. Y., Nelson S. D. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1327–1331. doi: 10.1073/pnas.81.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahlin D. C., Nelson S. D. Synthesis, decomposition kinetics, and preliminary toxicological studies of pure N-acetyl-p-benzoquinone imine, a proposed toxic metabolite of acetaminophen. J Med Chem. 1982 Aug;25(8):885–886. doi: 10.1021/jm00350a001. [DOI] [PubMed] [Google Scholar]
  6. Fernando C. R., Calder I. C., Ham K. N. Studies on the mechanism of toxicity of acetaminophen. Synthesis and reactions of N-acetyl-2,6-dimethyl- and N-acetyl-3,5-dimethyl-p-benzoquinone imines. J Med Chem. 1980 Nov;23(11):1153–1158. doi: 10.1021/jm00185a001. [DOI] [PubMed] [Google Scholar]
  7. Fischer V., Mason R. P. Stable free radical and benzoquinone imine metabolites of an acetaminophen analogue. J Biol Chem. 1984 Aug 25;259(16):10284–10288. [PubMed] [Google Scholar]
  8. Gemborys M. W., Mudge G. H. Formation and disposition of the minor metabolites of acetaminophen in the hamster. Drug Metab Dispos. 1981 Jul-Aug;9(4):340–351. [PubMed] [Google Scholar]
  9. Hinson J. A., Pohl L. R., Gillette J. R. N-Hydroxyacetaminophen: a microsomal metabolite of N-hydroxyphenacetin but apparently not of acetaminophen. Life Sci. 1979 Jun 4;24(23):2133–2138. doi: 10.1016/0024-3205(79)90111-5. [DOI] [PubMed] [Google Scholar]
  10. Hinson J. A., Pohl L. R., Monks T. J., Gillette J. R. Acetaminophen-induced hepatotoxicity. Life Sci. 1981 Jul 13;29(2):107–116. doi: 10.1016/0024-3205(81)90278-2. [DOI] [PubMed] [Google Scholar]
  11. Jollow D. J., Mitchell J. R., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 1973 Oct;187(1):195–202. [PubMed] [Google Scholar]
  12. Jollow D. J., Thorgeirsson S. S., Potter W. Z., Hashimoto M., Mitchell J. R. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology. 1974;12(4-5):251–271. doi: 10.1159/000136547. [DOI] [PubMed] [Google Scholar]
  13. Lauterburg B. H., Smith C. V., Hughes H., Mitchell J. R. Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress. J Clin Invest. 1984 Jan;73(1):124–133. doi: 10.1172/JCI111182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miner D. J., Kissinger P. T. Evidence for the involvement of N-acetyl-p- quinoneimine in acetaminophen metabolism. Biochem Pharmacol. 1979 Nov 15;28(22):3285–3290. doi: 10.1016/0006-2952(79)90123-0. [DOI] [PubMed] [Google Scholar]
  15. Mitchell J. R., Jollow D. J., Gillette J. R., Brodie B. B. Drug metabolism as a cause of drug toxicity. Drug Metab Dispos. 1973 Jan-Feb;1(1):418–423. [PubMed] [Google Scholar]
  16. Mitchell J. R., Jollow D. J., Potter W. Z., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther. 1973 Oct;187(1):211–217. [PubMed] [Google Scholar]
  17. Moldèus P., Rahimtula A. Metabolism of paracetamol to a glutathione conjugate catalyzed by prostaglandin synthetase. Biochem Biophys Res Commun. 1980 Sep 16;96(1):469–475. doi: 10.1016/0006-291x(80)91238-3. [DOI] [PubMed] [Google Scholar]
  18. Moldéus P., Andersson B., Rahimtula A., Berggren M. Prostaglandin synthetase catalyzed activation of paracetamol. Biochem Pharmacol. 1982 Apr 1;31(7):1363–1368. doi: 10.1016/0006-2952(82)90029-6. [DOI] [PubMed] [Google Scholar]
  19. Nelson S. D., Dahlin D. C., Rauckman E. J., Rosen G. M. Peroxidase-mediated formation of reactive metabolites of acetaminophen. Mol Pharmacol. 1981 Jul;20(1):195–199. [PubMed] [Google Scholar]
  20. Powis G., Svingen B. A., Dahlin D. C., Nelson S. D. Enzymatic and non-enzymatic reduction of N-acetyl-p-benzoquinone imine and some properties of the N-acetyl-p-benzosemiquinone imine radical. Biochem Pharmacol. 1984 Aug 1;33(15):2367–2370. doi: 10.1016/0006-2952(84)90707-x. [DOI] [PubMed] [Google Scholar]
  21. Prescott L. F., Roscoe P., Wright N., Brown S. S. Plasma-paracetamol half-life and hepatic necrosis in patients with paracetamol overdosage. Lancet. 1971 Mar 13;1(7698):519–522. doi: 10.1016/s0140-6736(71)91125-1. [DOI] [PubMed] [Google Scholar]
  22. Rosen G. M., Rauckman E. J., Ellington S. P., Dahlin D. C., Christie J. L., Nelson S. D. Reduction and glutathione conjugation reactions of N-acetyl-p-benzoquinone imine and two dimethylated analogues. Mol Pharmacol. 1984 Jan;25(1):151–157. [PubMed] [Google Scholar]
  23. Rosen G. M., Singletary W. V., Jr, Rauckman E. J., Killenberg P. G. Acetaminophen hepatotoxicity. An alternative mechanism. Biochem Pharmacol. 1983 Jul 1;32(13):2053–2059. doi: 10.1016/0006-2952(83)90426-4. [DOI] [PubMed] [Google Scholar]
  24. Sawada Y., Iyanagi T., Yamazaki I. Relation between redox potentials and rate constants in reactions coupled with the system oxygen-superoxide. Biochemistry. 1975 Aug 26;14(17):3761–3764. doi: 10.1021/bi00688a007. [DOI] [PubMed] [Google Scholar]
  25. Shiga T., Imaizumi K. Electron spin resonance study on peroxidase- and oxidase-reactions of horse radish peroxidase and methemoglobin. Arch Biochem Biophys. 1975 Apr;167(2):469–479. doi: 10.1016/0003-9861(75)90489-0. [DOI] [PubMed] [Google Scholar]
  26. Shiga T., Imaizumi K. Generation of phenoxy radicals by methemoglobin-hydrogen peroxide studies by electron paramagnetic resonance. Arch Biochem Biophys. 1973 Feb;154(2):540–547. doi: 10.1016/0003-9861(73)90006-4. [DOI] [PubMed] [Google Scholar]
  27. West P. R., Harman L. S., Josephy P. D., Mason R. P. Acetaminophen: enzymatic formation of a transient phenoxyl free radical. Biochem Pharmacol. 1984 Sep 15;33(18):2933–2936. doi: 10.1016/0006-2952(84)90222-3. [DOI] [PubMed] [Google Scholar]
  28. Yamazaki I., Ohnishi T. One-electron-transfer reactions in biochemical systems. I. Kinetic analysis of the oxidation-reduction equilibrium between quinol-quinone and ferro-ferricytochrome. Bibl Laeger. 1966 Mar 14;112(3):469–481. doi: 10.1016/0926-6585(66)90249-4. [DOI] [PubMed] [Google Scholar]
  29. de Vries J. Hepatotoxic metabolic activation of paracetamol and its derivatives phenacetin and benorilate: oxygenation or electron transfer? Biochem Pharmacol. 1981 Mar 1;30(5):399–402. doi: 10.1016/0006-2952(81)90622-5. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES