Abstract
The electrostatic potential V(r) that is created in the space around a molecule by its nuclei and electrons (treated as static distributions of charge) is a very useful property for analyzing and predicting molecular reactive behavior. It is rigorously defined and can be determined experimentally as well as computationally. The potential has been particularly useful as an indicator of the sites or regions of a molecule to which an approaching electrophile is initially attracted, and it has also been applied successfully to the study of interactions that involve a certain optimum relative orientation of the reactants, such as between a drug and its cellular receptor. A variety of methods for calculating V(r) is available, at different levels of rigor. For large biologically active molecules, multipole expansions and superposition of potentials computed for subunits have been found to be effective. A large number of chemical and biochemical systems and processes have now been studied in terms of electrostatic potentials. Three examples of such applications are surveyed in this paper. These deal with: (a) reactive properties of nucleic acids, including their component bases; (b) biological recognition processes, including drug-receptors and enzyme-substrate interactions; and (c) chemical carcinogenesis, referring specifically to the polycyclic aromatic hydrocarbons and halogenated olefins and their epoxides. For each of these areas, examples of the use of electrostatic potentials in elucidating structure-activity patterns are given.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee S., Van Duuren B. L. Covalent binding of the carcinogen trichloroethylene to hepatic microsomal proteins and to exogenous DNA in vitro. Cancer Res. 1978 Mar;38(3):776–780. [PubMed] [Google Scholar]
- Bartsch H., Malaveille C., Barbin A., Planche G. Mutagenic and alkylating metabolites of halo-ethylenes, chlorobutadienes and dichlorobutenes produced by rodent or human liver tissues. Evidence for oxirane formation by P450-linked microsomal mono-oxygenases. Arch Toxicol. 1979 Feb 23;41(4):249–277. doi: 10.1007/BF00296896. [DOI] [PubMed] [Google Scholar]
- Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
- Dearing A., Weiner P., Kollman P. A. Molecular mechanical studies of proflavine and acridine orange intercalation. Nucleic Acids Res. 1981 Mar 25;9(6):1483–1497. doi: 10.1093/nar/9.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Genel M., London D., Holtzapple P. G., Segal S. Uptake of alpha-methylglucoside by normal and diabetic human jejunal mucosa. J Lab Clin Med. 1971 May;77(5):743–750. [PubMed] [Google Scholar]
- Hanzlik R. P., Walsh J. S. Halogenated epoxides and related compounds as inhibitors of epoxide hydrase. Arch Biochem Biophys. 1980 Oct 1;204(1):255–263. doi: 10.1016/0003-9861(80)90031-4. [DOI] [PubMed] [Google Scholar]
- Hayes D. M., Kollman P. A. Electrostatic potentials of proteins. 2. Role of electrostatics in a possible catalytic mechanism for carboxypeptidase A. J Am Chem Soc. 1976 Nov 24;98(24):7811–7814. doi: 10.1021/ja00440a057. [DOI] [PubMed] [Google Scholar]
- Laib R. J., Gwinner L. M., Bolt H. M. DNA alkylation by vinyl chloride metabolites: etheno derivatives or 7-alkylation of guanine? Chem Biol Interact. 1981 Oct;37(1-2):219–231. doi: 10.1016/0009-2797(81)90179-4. [DOI] [PubMed] [Google Scholar]
- Lavery R., Pullman A., Pullman B. The electrostatic field of the component units of DNA and its relationship to hydration. Biophys Chem. 1983 Jan;17(1):75–86. doi: 10.1016/0301-4622(83)87016-1. [DOI] [PubMed] [Google Scholar]
- Lawley P. D. Effects of some chemical mutagens and carcinogens on nucleic acids. Prog Nucleic Acid Res Mol Biol. 1966;5:89–131. doi: 10.1016/s0079-6603(08)60232-9. [DOI] [PubMed] [Google Scholar]
- Loew G. H., Berkowitz D. S. Quantum chemical studies of morphine-like opiate narcotics. Effect of N-substituent variations. J Med Chem. 1975 Jul;18(7):656–662. doi: 10.1021/jm00241a002. [DOI] [PubMed] [Google Scholar]
- Martín M., Carbó R., Petrongolo C., Tomasi J. Structure-activity relationships of phenethylamine. a comparison of quantum mechanical SCF "Ab initio" and semiempirical calculations. J Am Chem Soc. 1975 Mar 19;97(6):1338–1347. doi: 10.1021/ja00839a009. [DOI] [PubMed] [Google Scholar]
- Osman R., Weinstein H., Topiol S. Models for active sites of metalloenzymes. II. Interactions with a model substrate. Ann N Y Acad Sci. 1981;367:356–369. doi: 10.1111/j.1749-6632.1981.tb50578.x. [DOI] [PubMed] [Google Scholar]
- Osterman-Golkar S., Hultmark D., Segerbäck D., Calleman C. J., Göthe R., Ehrenberg L., Wachtmeister C. A. Alkylation of DNA and proteins in mice exposed to vinyl chloride. Biochem Biophys Res Commun. 1976 May 23;76(2):259–266. doi: 10.1016/0006-291x(77)90720-3. [DOI] [PubMed] [Google Scholar]
- PULLMAN A., PULLMAN B. Electronic structure and carcinogenic activity of aromatic molecules; new developments. Adv Cancer Res. 1955;3:117–169. doi: 10.1016/s0065-230x(08)60919-7. [DOI] [PubMed] [Google Scholar]
- Pullman A., Pullman B. Molecular electrostatic potential of the nucleic acids. Q Rev Biophys. 1981 Aug;14(3):289–380. doi: 10.1017/s0033583500002341. [DOI] [PubMed] [Google Scholar]
- Pullman B., Lavery R., Pullman A. Two aspects of DNA polymorphism and microheterogeneity: molecular electrostatic potential and steric accessibility. Eur J Biochem. 1982 May 17;124(2):229–238. doi: 10.1111/j.1432-1033.1982.tb06582.x. [DOI] [PubMed] [Google Scholar]
- Pullman B., Perahia D., Cauchy D. The molecular electrostatic potential of the B-DNA helix. VI. The regions of the base pairs in poly (dG.dC) and poly (dA.dT). Nucleic Acids Res. 1979 Aug 24;6(12):3821–3829. doi: 10.1093/nar/6.12.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rein R., Rabinowitz J. R., Swissler T. J. Quantitative examination of the approximations in the monopole and dipole theories of intermolecular interactions. J Theor Biol. 1972 Feb;34(2):215–218. doi: 10.1016/0022-5193(72)90156-7. [DOI] [PubMed] [Google Scholar]
- Santella R. M., Grunberger D., Weinstein I. B., Rich A. Induction of the Z conformation in poly(dG-dC).poly(dG-dC) by binding of N-2-acetylaminofluorene to guanine residues. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1451–1455. doi: 10.1073/pnas.78.3.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherer E., Van der Laken C. J., Gwinner L. M., Laib R. J., Emmelot P. Modification of deoxyguanosine by chloroethylene oxide. Carcinogenesis. 1981;2(7):671–677. doi: 10.1093/carcin/2.7.671. [DOI] [PubMed] [Google Scholar]
- Stamatiadou M. N., Swissler T. J., Rabinowitz J. R., Rein R. Complementary DNA base interactions: application of recently refined electrostatic interaction theory. Biopolymers. 1972;11(6):1217–1234. doi: 10.1002/bip.1972.360110608. [DOI] [PubMed] [Google Scholar]
- Szalda D. J., Marzilli L. G., Kistenmacher T. J. Dipeptide-metal-nucleoside complexes as models for enzyme-metal-nucleic acid ternary species. Synthesis and molecular structure of the cytidine complex of glycylglycinatocopper(II). Biochem Biophys Res Commun. 1975 Apr 7;63(3):601–605. doi: 10.1016/s0006-291x(75)80426-8. [DOI] [PubMed] [Google Scholar]
- Weiner P. K., Langridge R., Blaney J. M., Schaefer R., Kollman P. A. Electrostatic potential molecular surfaces. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3754–3758. doi: 10.1073/pnas.79.12.3754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein H., Osman R., Topiol S., Green J. P. Quantum chemical studies on molecular determinants for drug action. Ann N Y Acad Sci. 1981;367:434–451. doi: 10.1111/j.1749-6632.1981.tb50583.x. [DOI] [PubMed] [Google Scholar]