Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1982 Apr;44:55–62. doi: 10.1289/ehp.824455

Newer laboratory approaches for assessing visual dysfunction.

P G Shinkman, M R Isley, D C Rogers
PMCID: PMC1568969  PMID: 7044776

Abstract

The crucial point that will be emphasized throughout this report is the potential utility of analyzing visual cortical receptive field (RF) properties of the single-cell level as a sensitive and reliable neurotoxicity screening tool. Numerous studies employing exposure of kittens to altered visual environments during the critical period have demonstrated that particular classes of RFs can be selectively affected while sparing others. There has been a rapid proliferation of new methods used to investigate such effects. An important current trend involves the development of multidisciplinary combinations of approaches. The various maneuvers reviewed here seem adaptable to studying neurotoxic insult of the sensitive properties of cortical visual neurons, particularly in the cat or monkey. Conceivably, a general disruption of cortical RF properties might be expected following toxic exposure since individual RF properties are generally not determined by completely independent mechanisms. In fact, some toxicants might produce a general degradation of RF properties akin to the electrophysiological results reported for long-term dark rearing or binocular deprivation.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albus K. 14C-deoxyglucose mapping of orientation subunits in the cats visual cortical areas. Exp Brain Res. 1979;37(3):609–613. doi: 10.1007/BF00236828. [DOI] [PubMed] [Google Scholar]
  2. Blake R., Hirsch H. V. Deficits in binocular depth perception in cats after alternating monocular deprivation. Science. 1975 Dec 12;190(4219):1114–1116. doi: 10.1126/science.1188391. [DOI] [PubMed] [Google Scholar]
  3. Blakemore C., Cooper G. F. Development of the brain depends on the visual environment. Nature. 1970 Oct 31;228(5270):477–478. doi: 10.1038/228477a0. [DOI] [PubMed] [Google Scholar]
  4. Blakemore C., Mitchell D. E. Environmental modification of the visual cortex and the neural basis of learning and memory. Nature. 1973 Feb 16;241(5390):467–468. doi: 10.1038/241467a0. [DOI] [PubMed] [Google Scholar]
  5. Blasdel G. G., Mitchell D. E., Muir D. W., Pettigrew J. D. A physiological and behavioural study in cats of the effect of early visual experience with contours of a single orientation. J Physiol. 1977 Mar;265(3):615–636. doi: 10.1113/jphysiol.1977.sp011734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniels J. D., Pettigrew J. D., Norman J. L. Development of single-neuron responses in kitten's lateral geniculate nucleus. J Neurophysiol. 1978 Nov;41(6):1373–1393. doi: 10.1152/jn.1978.41.6.1373. [DOI] [PubMed] [Google Scholar]
  7. Dyer R. S., Eccles C. U., Annau Z. Evoked potential alterations following prenatal methyl mercury exposure. Pharmacol Biochem Behav. 1978 Feb;8(2):137–141. doi: 10.1016/0091-3057(78)90330-1. [DOI] [PubMed] [Google Scholar]
  8. HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 1965 Mar;28:229–289. doi: 10.1152/jn.1965.28.2.229. [DOI] [PubMed] [Google Scholar]
  9. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirsch H. V., Spinelli D. N. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science. 1970 May 15;168(3933):869–871. doi: 10.1126/science.168.3933.869. [DOI] [PubMed] [Google Scholar]
  11. Hubel D. H., Wiesel T. N. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol. 1974 Dec 1;158(3):267–293. doi: 10.1002/cne.901580304. [DOI] [PubMed] [Google Scholar]
  12. Hubel D. H., Wiesel T. N., Stryker M. P. Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique. Nature. 1977 Sep 22;269(5626):328–330. doi: 10.1038/269328a0. [DOI] [PubMed] [Google Scholar]
  13. Hubel D. H., Wiesel T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970 Feb;206(2):419–436. doi: 10.1113/jphysiol.1970.sp009022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kasamatsu T., Pettigrew J. D., Ary M. Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J Comp Neurol. 1979 May 1;185(1):163–181. doi: 10.1002/cne.901850110. [DOI] [PubMed] [Google Scholar]
  15. Kasamatsu T., Pettigrew J. D. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science. 1976 Oct 8;194(4261):206–209. doi: 10.1126/science.959850. [DOI] [PubMed] [Google Scholar]
  16. LeVay S., Stryker M. P., Shatz C. J. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J Comp Neurol. 1978 May 1;179(1):223–244. doi: 10.1002/cne.901790113. [DOI] [PubMed] [Google Scholar]
  17. Lennie P. Parallel visual pathways: a review. Vision Res. 1980;20(7):561–594. doi: 10.1016/0042-6989(80)90115-7. [DOI] [PubMed] [Google Scholar]
  18. Mitchell D. E., Giffin F., Timney B. A behavioural technique for the rapid assessment of the visual capabilities of kittens. Perception. 1977;6(2):181–193. doi: 10.1068/p060181. [DOI] [PubMed] [Google Scholar]
  19. Muir D. W., Mitchell D. E. Visual resolution and experience: acuity deficits in cats following early selective visual deprivation. Science. 1973 Apr 27;180(4084):420–422. doi: 10.1126/science.180.4084.420. [DOI] [PubMed] [Google Scholar]
  20. Peck C. K., Blakemore C. Modification of single neurons in the kitten's visual cortex after brief periods of monocular visual experience. Exp Brain Res. 1975;22(1):57–68. doi: 10.1007/BF00235411. [DOI] [PubMed] [Google Scholar]
  21. Pettigrew J. D., Daniels J. D. Gamma-aminobutyric acid antagonism in visual cortex: different effects on simple, complex, and hypercomplex neurons. Science. 1973 Oct 5;182(4107):81–83. doi: 10.1126/science.182.4107.81. [DOI] [PubMed] [Google Scholar]
  22. Pettigrew J. D., Kasamatsu T. Local perfusion of noradrenaline maintains visual cortical plasticity. Nature. 1978 Feb 23;271(5647):761–763. doi: 10.1038/271761a0. [DOI] [PubMed] [Google Scholar]
  23. Pettigrew J. D. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. J Physiol. 1974 Feb;237(1):49–74. doi: 10.1113/jphysiol.1974.sp010469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sillito A. M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol. 1975 Sep;250(2):305–329. doi: 10.1113/jphysiol.1975.sp011056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stryker M. P., Sherk H. Modification of cortical orientation selectivity in the cat by restricted visual experience: a reexamination. Science. 1975 Nov 28;190(4217):904–906. doi: 10.1126/science.1188372. [DOI] [PubMed] [Google Scholar]
  26. Tretter F., Cynader M., Singer W. Modification of direction selectivity of neurons in the visual cortex of kittens. Brain Res. 1975 Jan 24;84(1):143–149. doi: 10.1016/0006-8993(75)90808-2. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES