Abstract
Pathogenesis-related (PR) proteins are plant proteins induced in response to infection by pathogens. In this study, an antibody raised against the maize PRms protein was used to localize the protein in fungal-infected maize radicles. The PRms protein was found to be localized at the contact areas between parenchyma cells of the differentiating protoxylem elements. By using immunoelectron microscopy, we found that these immunoreactive regions correspond to plasmodesmal regions. This was also true for the parenchyma cells filling the central pith of the vascular cylinder, although PRms mRNA accumulation was not detected in these cells. These findings suggest that for one cell type, the parenchyma cells of the central pith, the protein is imported rather than synthesized. The localization of the PRms protein indicates the possible existence of mechanisms for sorting of plant proteins to plasmodesmata and suggests that this protein may have a specialized function in the plant defense response. These findings are discussed with respect to the structure and function of plasmodesmata in cell-to-cell communication processes in higher plants.
Full Text
The Full Text of this article is available as a PDF (4.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berna A., Gafny R., Wolf S., Lucas W. J., Holt C. A., Beachy R. N. The TMV movement protein: role of the C-terminal 73 amino acids in subcellular localization and function. Virology. 1991 Jun;182(2):682–689. doi: 10.1016/0042-6822(91)90609-f. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Casacuberta J. M., Puigdomènech P., San Segundo B. A gene coding for a basic pathogenesis-related (PR-like) protein from Zea mays. Molecular cloning and induction by a fungus (Fusarium moniliforme) in germinating maize seeds. Plant Mol Biol. 1991 Apr;16(4):527–536. doi: 10.1007/BF00023419. [DOI] [PubMed] [Google Scholar]
- Citovsky V., Knorr D., Schuster G., Zambryski P. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell. 1990 Feb 23;60(4):637–647. doi: 10.1016/0092-8674(90)90667-4. [DOI] [PubMed] [Google Scholar]
- Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell. 1992 Apr;4(4):397–411. doi: 10.1105/tpc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cordero M. J., Raventós D., San Segundo B. Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection: systemic wound-response of a monocot gene. Plant J. 1994 Aug;6(2):141–150. doi: 10.1046/j.1365-313x.1994.6020141.x. [DOI] [PubMed] [Google Scholar]
- Deom C. M., Oliver M. J., Beachy R. N. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science. 1987 Jul 24;237(4813):389–394. doi: 10.1126/science.237.4813.389. [DOI] [PubMed] [Google Scholar]
- Ding B., Haudenshield J. S., Hull R. J., Wolf S., Beachy R. N., Lucas W. J. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell. 1992 Aug;4(8):915–928. doi: 10.1105/tpc.4.8.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epel B. L. Plasmodesmata: composition, structure and trafficking. Plant Mol Biol. 1994 Dec;26(5):1343–1356. doi: 10.1007/BF00016479. [DOI] [PubMed] [Google Scholar]
- Fujiwara T., Giesman-Cookmeyer D., Ding B., Lommel S. A., Lucas W. J. Cell-to-Cell Trafficking of Macromolecules through Plasmodesmata Potentiated by the Red Clover Necrotic Mosaic Virus Movement Protein. Plant Cell. 1993 Dec;5(12):1783–1794. doi: 10.1105/tpc.5.12.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giesman-Cookmeyer D., Lommel S. A. Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains. Plant Cell. 1993 Aug;5(8):973–982. doi: 10.1105/tpc.5.8.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinlein M., Epel B. L., Padgett H. S., Beachy R. N. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science. 1995 Dec 22;270(5244):1983–1985. doi: 10.1126/science.270.5244.1983. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lucas W. J., Bouché-Pillon S., Jackson D. P., Nguyen L., Baker L., Ding B., Hake S. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science. 1995 Dec 22;270(5244):1980–1983. doi: 10.1126/science.270.5244.1980. [DOI] [PubMed] [Google Scholar]
- Lůcas W. J., Wolf S. Plasmodesmata: the intercellular organelles of green plants. Trends Cell Biol. 1993 Sep;3(9):308–315. doi: 10.1016/0962-8924(93)90013-q. [DOI] [PubMed] [Google Scholar]
- McLean B. G., Zupan J., Zambryski P. C. Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell. 1995 Dec;7(12):2101–2114. doi: 10.1105/tpc.7.12.2101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noueiry A. O., Lucas W. J., Gilbertson R. L. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell. 1994 Mar 11;76(5):925–932. doi: 10.1016/0092-8674(94)90366-2. [DOI] [PubMed] [Google Scholar]
- Raventós D., Jensen A. B., Rask M. B., Casacuberta J. M., Mundy J., San Segundo B. A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene. Plant J. 1995 Jan;7(1):147–155. doi: 10.1046/j.1365-313x.1995.07010147.x. [DOI] [PubMed] [Google Scholar]
- Russin W. A., Evert R. F., Vanderveer P. J., Sharkey T. D., Briggs S. P. Modification of a Specific Class of Plasmodesmata and Loss of Sucrose Export Ability in the sucrose export defective1 Maize Mutant. Plant Cell. 1996 Apr;8(4):645–658. doi: 10.1105/tpc.8.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Séron K., Haenni A. L. Vascular movement of plant viruses. Mol Plant Microbe Interact. 1996 Aug;9(6):435–442. doi: 10.1094/mpmi-9-0435. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waigmann E., Lucas W. J., Citovsky V., Zambryski P. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1433–1437. doi: 10.1073/pnas.91.4.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waigmann E., Zambryski P. Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell. 1995 Dec;7(12):2069–2079. doi: 10.1105/tpc.7.12.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf S., Deom C. M., Beachy R. N., Lucas W. J. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989 Oct 20;246(4928):377–379. doi: 10.1126/science.246.4928.377. [DOI] [PubMed] [Google Scholar]