Abstract
The active oxygen species hydrogen peroxide (H2O2) was detected cytochemically by its reaction with cerium chloride to produce electron-dense deposits of cerium perhydroxides. In uninoculated lettuce leaves, H2O2 was typically present within the secondary thickened walls of xylem vessels. Inoculation with wild-type cells of Pseudomonas syringae pv phaseolicola caused a rapid hypersensitive reaction (HR) during which highly localized accumulation of H2O2 was found in plant cell walls adjacent to attached bacteria. Quantitative analysis indicated a prolonged burst of H2O2 occurring between 5 to 8 hr after inoculation in cells undergoing the HR during this example of non-host resistance. Cell wall alterations and papilla deposition, which occurred in response to both the wild-type strain and a nonpathogenic hrpD mutant, were not associated with intense staining for H2O2, unless the responding cell was undergoing the HR. Catalase treatment to decompose H2O2 almost entirely eliminated staining, but 3-amino-1,2,4-triazole (catalase inhibitor) did not affect the pattern of distribution of H2O2 detected. H2O2 production was reduced more by the inhibition of plant peroxidases (with potassium cyanide and sodium azide) than by inhibition of neutrophil-like NADPH oxidase (with diphenylene iodonium chloride). Results suggest that CeCl3 reacts with excess H2O2 that is not rapidly metabolized during cross-linking reactions occurring in cell walls; such an excess of H2O2 in the early stages of the plant-bacterium interaction was only produced during the HR. The highly localized accumulation of H2O2 is consistent with its direct role as an antimicrobial agent and as the cause of localized membrane damage at sites of bacterial attachment.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arends M. J., Wyllie A. H. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991;32:223–254. doi: 10.1016/b978-0-12-364932-4.50010-1. [DOI] [PubMed] [Google Scholar]
- Bestwick C. S., Bennett M. H., Mansfield J. W. Hrp Mutant of Pseudomonas syringae pv phaseolicola Induces Cell Wall Alterations but Not Membrane Damage Leading to the Hypersensitive Reaction in Lettuce. Plant Physiol. 1995 Jun;108(2):503–516. doi: 10.1104/pp.108.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
- Brady S. T. Motor neurons and neurofilaments in sickness and in health. Cell. 1993 Apr 9;73(1):1–3. doi: 10.1016/0092-8674(93)90151-f. [DOI] [PubMed] [Google Scholar]
- Briggs R. T., Drath D. B., Karnovsky M. L., Karnovsky M. J. Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method. J Cell Biol. 1975 Dec;67(3):566–586. doi: 10.1083/jcb.67.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brisson L. F., Tenhaken R., Lamb C. Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell. 1994 Dec;6(12):1703–1712. doi: 10.1105/tpc.6.12.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buja L. M., Eigenbrodt M. L., Eigenbrodt E. H. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med. 1993 Dec;117(12):1208–1214. [PubMed] [Google Scholar]
- Buttke T. M., Sandstrom P. A. Redox regulation of programmed cell death in lymphocytes. Free Radic Res. 1995 May;22(5):389–397. doi: 10.3109/10715769509147548. [DOI] [PubMed] [Google Scholar]
- Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
- Collins R. J., Harmon B. V., Gobé G. C., Kerr J. F. Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol. 1992 Apr;61(4):451–453. doi: 10.1080/09553009214551201. [DOI] [PubMed] [Google Scholar]
- Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
- Dwyer S. C., Legendre L., Low P. S., Leto T. L. Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochim Biophys Acta. 1996 Mar 15;1289(2):231–237. doi: 10.1016/0304-4165(95)00156-5. [DOI] [PubMed] [Google Scholar]
- Dypbukt J. M., Ankarcrona M., Burkitt M., Sjöholm A., Ström K., Orrenius S., Nicotera P. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem. 1994 Dec 2;269(48):30553–30560. [PubMed] [Google Scholar]
- Dème D., Doussiere J., De Sandro V., Dupuy C., Pommier J., Virion A. The Ca2+/NADPH-dependent H2O2 generator in thyroid plasma membrane: inhibition by diphenyleneiodonium. Biochem J. 1994 Jul 1;301(Pt 1):75–81. doi: 10.1042/bj3010075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
- Iiyama K., Lam TBT., Stone B. A. Covalent Cross-Links in the Cell Wall. Plant Physiol. 1994 Feb;104(2):315–320. doi: 10.1104/pp.104.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
- Jacobson M. D. Reactive oxygen species and programmed cell death. Trends Biochem Sci. 1996 Mar;21(3):83–86. [PubMed] [Google Scholar]
- Jakobek J. L., Lindgren P. B. Generalized Induction of Defense Responses in Bean Is Not Correlated with the Induction of the Hypersensitive Reaction. Plant Cell. 1993 Jan;5(1):49–56. doi: 10.1105/tpc.5.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine A., Pennell R. I., Alvarez M. E., Palmer R., Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol. 1996 Apr 1;6(4):427–437. doi: 10.1016/s0960-9822(02)00510-9. [DOI] [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- Martin S. J., Green D. R., Cotter T. G. Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem Sci. 1994 Jan;19(1):26–30. doi: 10.1016/0968-0004(94)90170-8. [DOI] [PubMed] [Google Scholar]
- May M. J., Hammond-Kosack K. E., Jones JDG. Involvement of Reactive Oxygen Species, Glutathione Metabolism, and Lipid Peroxidation in the Cf-Gene-Dependent Defense Response of Tomato Cotyledons Induced by Race-Specific Elicitors of Cladosporium fulvum. Plant Physiol. 1996 Apr;110(4):1367–1379. doi: 10.1104/pp.110.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Lam E. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell. 1995 Nov;7(11):1951–1962. doi: 10.1105/tpc.7.11.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Lam E. Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol. 1996 Jan;4(1):10–15. doi: 10.1016/0966-842x(96)81499-5. [DOI] [PubMed] [Google Scholar]
- Murphy T. M., Auh C. K. The Superoxide Synthases of Plasma Membrane Preparations from Cultured Rose Cells. Plant Physiol. 1996 Feb;110(2):621–629. doi: 10.1104/pp.110.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mäder M., Amberg-Fisher V. Role of peroxidase in lignification of tobacco cells : I. Oxidation of nicotinamide adenine dinucleotide and formation of hydrogen peroxide by cell wall peroxidases. Plant Physiol. 1982 Oct;70(4):1128–1131. doi: 10.1104/pp.70.4.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryerson D. E., Heath M. C. Cleavage of Nuclear DNA into Oligonucleosomal Fragments during Cell Death Induced by Fungal Infection or by Abiotic Treatments. Plant Cell. 1996 Mar;8(3):393–402. doi: 10.1105/tpc.8.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenhaken R., Levine A., Brisson L. F., Dixon R. A., Lamb C. Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4158–4163. doi: 10.1073/pnas.92.10.4158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vera-Estrella R., Blumwald E., Higgins V. J. Effect of Specific Elicitors of Cladosporium fulvum on Tomato Suspension Cells : Evidence for the Involvement of Active Oxygen Species. Plant Physiol. 1992 Jul;99(3):1208–1215. doi: 10.1104/pp.99.3.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vianello A., Macrì F. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. J Bioenerg Biomembr. 1991 Jun;23(3):409–423. doi: 10.1007/BF00771012. [DOI] [PubMed] [Google Scholar]
- Wang H., Li J., Bostock R. M., Gilchrist D. G. Apoptosis: A Functional Paradigm for Programmed Plant Cell Death Induced by a Host-Selective Phytotoxin and Invoked during Development. Plant Cell. 1996 Mar;8(3):375–391. doi: 10.1105/tpc.8.3.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wojtaszek P., Trethowan J., Bolwell G. P. Specificity in the immobilisation of cell wall proteins in response to different elicitor molecules in suspension-cultured cells of French bean (Phaseolus vulgaris L.). Plant Mol Biol. 1995 Sep;28(6):1075–1087. doi: 10.1007/BF00032668. [DOI] [PubMed] [Google Scholar]
- Yahraus T., Chandra S., Legendre L., Low P. S. Evidence for a Mechanically Induced Oxidative Burst. Plant Physiol. 1995 Dec;109(4):1259–1266. doi: 10.1104/pp.109.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]