Abstract
Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The K(m) for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 microM, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amasino R. M. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem. 1986 Feb 1;152(2):304–307. doi: 10.1016/0003-2697(86)90413-6. [DOI] [PubMed] [Google Scholar]
- Berhe A., Fristedt U., Persson B. L. Expression and purification of the high-affinity phosphate transporter of Saccharomyces cerevisiae. Eur J Biochem. 1995 Jan 15;227(1-2):566–572. doi: 10.1111/j.1432-1033.1995.tb20426.x. [DOI] [PubMed] [Google Scholar]
- Bun-Ya M., Harashima S., Oshima Y. Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Jul;12(7):2958–2966. doi: 10.1128/mcb.12.7.2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bun-Ya M., Nishimura M., Harashima S., Oshima Y. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol. 1991 Jun;11(6):3229–3238. doi: 10.1128/mcb.11.6.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bun-ya M., Shikata K., Nakade S., Yompakdee C., Harashima S., Oshima Y. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet. 1996 Mar;29(4):344–351. [PubMed] [Google Scholar]
- Cirillo V. P. Sugar transport in normal and mutant yeast cells. Methods Enzymol. 1989;174:617–622. doi: 10.1016/0076-6879(89)74040-4. [DOI] [PubMed] [Google Scholar]
- Harrison M. J., van Buuren M. L. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 1995 Dec 7;378(6557):626–629. doi: 10.1038/378626a0. [DOI] [PubMed] [Google Scholar]
- Jeanjean R. Phosphate uptake in Chlorella pyrenoidosa : II. Effect of pH and of SH reagents. Biochimie. 1975;57(10):1229–1236. [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
- Maas E. V., Ogata G., Finkel M. H. Salt-induced Inhibition of Phosphate Transport and Release of Membrane Proteins from Barley Roots. Plant Physiol. 1979 Jul;64(1):139–143. doi: 10.1104/pp.64.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann B. J., Bowman B. J., Grotelueschen J., Metzenberg R. L. Nucleotide sequence of pho-4+, encoding a phosphate-repressible phosphate permease of Neurospora crassa. Gene. 1989 Nov 30;83(2):281–289. doi: 10.1016/0378-1119(89)90114-5. [DOI] [PubMed] [Google Scholar]
- Muchhal U. S., Pardo J. M., Raghothama K. G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10519–10523. doi: 10.1073/pnas.93.19.10519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ni B., Rosteck P. R., Jr, Nadi N. S., Paul S. M. Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5607–5611. doi: 10.1073/pnas.91.12.5607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quesada A., Galván A., Fernández E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J. 1994 Mar;5(3):407–419. doi: 10.1111/j.1365-313x.1994.00407.x. [DOI] [PubMed] [Google Scholar]
- Rao I. M., Arulanantham A. R., Terry N. Leaf Phosphate Status, Photosynthesis and Carbon Partitioning in Sugar Beet: II. Diurnal Changes in Sugar Phosphates, Adenylates, and Nicotinamide Nucleotides. Plant Physiol. 1989 Jul;90(3):820–826. doi: 10.1104/pp.90.3.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riesmeier J. W., Willmitzer L., Frommer W. B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992 Dec;11(13):4705–4713. doi: 10.1002/j.1460-2075.1992.tb05575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakano K. Proton/Phosphate Stoichiometry in Uptake of Inorganic Phosphate by Cultured Cells of Catharanthus roseus (L.) G. Don. Plant Physiol. 1990 Jun;93(2):479–483. doi: 10.1104/pp.93.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakano K., Yazaki Y., Mimura T. Cytoplasmic Acidification Induced by Inorganic Phosphate Uptake in Suspension Cultured Catharanthus roseus Cells: Measurement with Fluorescent pH Indicator and P-Nuclear Magnetic Resonance. Plant Physiol. 1992 Jun;99(2):672–680. doi: 10.1104/pp.99.2.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sentenac H., Grignon C. Effect of pH on Orthophosphate Uptake by Corn Roots. Plant Physiol. 1985 Jan;77(1):136–141. doi: 10.1104/pp.77.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith F. W., Ealing P. M., Dong B., Delhaize E. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 1997 Jan;11(1):83–92. doi: 10.1046/j.1365-313x.1997.11010083.x. [DOI] [PubMed] [Google Scholar]
- Smith F. W., Ealing P. M., Hawkesford M. J., Clarkson D. T. Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9373–9377. doi: 10.1073/pnas.92.20.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullrich C. I., Novacky A. J. Extra- and Intracellular pH and Membrane Potential Changes Induced by K, Cl, H(2)PO(4), and NO(3) Uptake and Fusicoccin in Root Hairs of Limnobium stoloniferum. Plant Physiol. 1990 Dec;94(4):1561–1567. doi: 10.1104/pp.94.4.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Versaw W. K. A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa. Gene. 1995 Feb 3;153(1):135–139. doi: 10.1016/0378-1119(94)00814-9. [DOI] [PubMed] [Google Scholar]
- Yompakdee C., Ogawa N., Harashima S., Oshima Y. A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae. Mol Gen Genet. 1996 Jul 19;251(5):580–590. doi: 10.1007/BF02173648. [DOI] [PubMed] [Google Scholar]