Abstract
The fibrogenic potential of 11 different welding fumes and metallic aerosols, considered to be reference standard surrogates for the commonly used welding technologies and applications responsible for 70% of welders exposure, is screened by using the rat peritoneal macrophage (RPM) in vitro bioassay. Only one class of fumes, that from the manual metal are welding of stainless steel, shows distinct fibrogenic potential. This fume, however, is not common to more than four or five of the heretofore 90 cases of pulmonary fibrosis reported among welders. Thus, although insoluble Cr(VI) is probably the active fibrogen in stainless steel fumes, an etiological factor common to all fibrogenic welding exposures must be sought; it is tentatively proposed to be NO chi, a potent experimental in vivo fibrogen copiously produced by certain welding processes and ubiquitous at low concentrations in the welding environment.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attfield M. D., Ross D. S. Radiological abnormalities in electric-arc welders. Br J Ind Med. 1978 May;35(2):117–122. doi: 10.1136/oem.35.2.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chrétien J., Bignon J., Choffel C., Verdoux P. Pneumothorax spontané récidivant avec image miliaire chez un soudeur à l'arc. J Fr Med Chir Thorac. 1965 Jul-Aug;19(5):481–494. [PubMed] [Google Scholar]
- Gadek J. E., Fells G. A., Crystal R. G. Cigarette smoking induces functional antiprotease deficiency in the lower respiratory tract of humans. Science. 1979 Dec 14;206(4424):1315–1316. doi: 10.1126/science.316188. [DOI] [PubMed] [Google Scholar]
- Garnuszewski Z., Dobrzyński W. Regression of pulmonary radiological changes in dockyard welders after cessation or decrease of exposure to welding fumes. Pol Med J. 1967;6(3):610–613. [PubMed] [Google Scholar]
- Guidotti T. L., Abraham J. L., DeNee P. B., Smith J. R. Arc Welders' pneumoconiosis: application of advanced scanning electron microscopy. Arch Environ Health. 1978 May-Jun;33(3):117–124. doi: 10.1080/00039896.1978.10667320. [DOI] [PubMed] [Google Scholar]
- Guidotti T. L. The higher oxides of nitrogen: inhalation toxicology. Environ Res. 1978 Jun;15(3):443–472. doi: 10.1016/0013-9351(78)90125-1. [DOI] [PubMed] [Google Scholar]
- Hedenstedt A., Jenssen D., Lidestein B-M, Ramel C., Rannug U., Stern R. M. Mutagenicity of fume particles from stainless steel welding. Scand J Work Environ Health. 1977 Dec;3(4):203–211. doi: 10.5271/sjweh.2776. [DOI] [PubMed] [Google Scholar]
- Hicks R., Hewitt P. J., Lam H. F. An investigation of the experimental induction of hypersensitivity in the guinea pig by material containing chromium, nickel and cobalt from arc welding fumes. Int Arch Allergy Appl Immunol. 1979;59(3):265–272. doi: 10.1159/000232269. [DOI] [PubMed] [Google Scholar]
- Janoff A., Carp H., Lee D. K., Drew R. T. Cigarette smoke inhalation decreases alpha 1-antitrypsin activity in rat lung. Science. 1979 Dec 14;206(4424):1313–1314. doi: 10.1126/science.316187. [DOI] [PubMed] [Google Scholar]
- Jones G. R., Proudfoot A. T., Hall J. I. Pulmonary effects of acute exposure to nitrous fumes. Thorax. 1973 Jan;28(1):61–65. doi: 10.1136/thx.28.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knudsen I. The mammalian spot test and its use for the testing of potential carcinogenicity of welding fume particles and hexavalent chromium. Acta Pharmacol Toxicol (Copenh) 1980 Jul;47(1):66–70. doi: 10.1111/j.1600-0773.1980.tb02027.x. [DOI] [PubMed] [Google Scholar]
- Morley R., Silk S. J. The industrial hazard from nitrous fumes. Ann Occup Hyg. 1970 Apr;13(2):101–107. doi: 10.1093/annhyg/13.2.101. [DOI] [PubMed] [Google Scholar]
- Pigott G. H., Ishmael J. A comparison between in vitro toxicity of PVC powders and their tissue reaction in vivo. Ann Occup Hyg. 1979;22(2):111–126. doi: 10.1093/annhyg/22.2.111. [DOI] [PubMed] [Google Scholar]
- Siegesmund K. A., Funahashi A., Pintar K. Identification of metals in lung from a patient with interstitial pneumonia. Arch Environ Health. 1974 Jun;28(6):345–349. doi: 10.1080/00039896.1974.10666506. [DOI] [PubMed] [Google Scholar]
- Stahlhofen W., Gebhart J., Heyder J. Experimental determination of the regional deposition of aerosol particles in the human respiratory tract. Am Ind Hyg Assoc J. 1980 Jun;41(6):385–98a. doi: 10.1080/15298668091424933. [DOI] [PubMed] [Google Scholar]
- Stern R. M. In vitro assessment of equivalence of occupational health risk: welders. Environ Health Perspect. 1983 Sep;51:217–222. doi: 10.1289/ehp.8351217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern R. M., Pigott G. H., Abraham J. L. Fibrogenic potential of welding fumes. J Appl Toxicol. 1983 Feb;3(1):18–30. doi: 10.1002/jat.2550030106. [DOI] [PubMed] [Google Scholar]
- Stern R. M. Process-dependent risk of delayed health effects for welders. Environ Health Perspect. 1981 Oct;41:235–253. doi: 10.1289/ehp.8141235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stettler L. E., Groth D. H., MacKay G. R. Identification of stainless steel welding fume particulates in human lung and environmental samples using electron probe microanalysis. Am Ind Hyg Assoc J. 1977 Feb;38(2):76–82. doi: 10.1080/0002889778507917. [DOI] [PubMed] [Google Scholar]
- Styles J. A., Wilson J. Comparison between in vitro toxicity of polymer and mineral dusts and their fibrogenicity. Ann Occup Hyg. 1973 Nov;16(3):241–250. doi: 10.1093/annhyg/16.3.241. [DOI] [PubMed] [Google Scholar]
- Ulfvarson U. Survey of air contaminants from welding. Scand J Work Environ Health. 1981;7 (Suppl 2):1–28. [PubMed] [Google Scholar]
- White L. R., Jakobsen K., Ostgaard K. Comparative toxicity studies of chromium-rich welding fumes and chromium on an established human cell line. Environ Res. 1979 Dec;20(2):366–374. doi: 10.1016/0013-9351(79)90013-6. [DOI] [PubMed] [Google Scholar]