Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Mar;9(3):453–462. doi: 10.1105/tpc.9.3.453

A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter.

K Fischer 1, B Kammerer 1, M Gutensohn 1, B Arbinger 1, A Weber 1, R E Häusler 1, U I Flügge 1
PMCID: PMC156930  PMID: 9090886

Abstract

We have purified a plastidic phosphate transport protein from maize endosperm membranes and cloned and sequenced the corresponding cDNAs from maize endosperm, maize roots, cauliflower buds, tobacco leaves, and Arabidopsis leaves. All of these cDNAs exhibit high homology to each other but only approximately 30% identity to the known chloroplast triose phosphate/phosphate translocators. The corresponding genes are expressed in both photosynthetically active tissues and in nongreen tissues, although transcripts were more abundant in nongreen tissues. Expression of the coding region in transformed yeast cells and subsequent transport measurements of the purified recombinant translocator showed that the protein mediates transport of inorganic phosphate in exchange with C3 compounds phosphorylated at C-atom 2, particularly phosphoenolpyruvate, which is required inside the plastids for the synthesis of, for example, aromatic amino acids. This plastidic phosphate transporter is thus different in structure and function from the known triose phosphate/phosphate translocator. We propose that plastids contain various phosphate translocators with overlapping substrate specificities to ensure an efficient supply of plastids with a single substrate, even in the presence of other phosphorylated metabolites.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alban C., Joyard J., Douce R. Preparation and characterization of envelope membranes from nongreen plastids. Plant Physiol. 1988 Nov;88(3):709–717. doi: 10.1104/pp.88.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Aoyagi K., Bassham J. A. Pyruvate orthophosphate dikinase of c(3) seeds and leaves as compared to the enzyme from maize. Plant Physiol. 1984 Jun;75(2):387–392. doi: 10.1104/pp.75.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyle S. A., Hemmingsen S. M., Dennis D. T. Energy Requirement for the Import of Protein into Plastids from Developing Endosperm of Ricinus communis L. Plant Physiol. 1990 Jan;92(1):151–154. doi: 10.1104/pp.92.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capaldi R. A., Vanderkooi G. The low polarity of many membrane proteins. Proc Natl Acad Sci U S A. 1972 Apr;69(4):930–932. doi: 10.1073/pnas.69.4.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer K., Arbinger B., Kammerer B., Busch C., Brink S., Wallmeier H., Sauer N., Eckerskorn C., Flügge U. I. Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3- and C4-plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate. Plant J. 1994 Feb;5(2):215–226. doi: 10.1046/j.1365-313x.1994.05020215.x. [DOI] [PubMed] [Google Scholar]
  7. Fischer K., Weber A., Brink S., Arbinger B., Schünemann D., Borchert S., Heldt H. W., Popp B., Benz R., Link T. A. Porins from plants. Molecular cloning and functional characterization of two new members of the porin family. J Biol Chem. 1994 Oct 14;269(41):25754–25760. [PubMed] [Google Scholar]
  8. Fliege R., Flügge U. I., Werdan K., Heldt H. W. Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta. 1978 May 10;502(2):232–247. doi: 10.1016/0005-2728(78)90045-2. [DOI] [PubMed] [Google Scholar]
  9. Flügge U. I. Reaction mechanism and asymmetric orientation of the reconstituted chloroplast phosphate translocator. Biochim Biophys Acta. 1992 Sep 21;1110(1):112–118. doi: 10.1016/0005-2736(92)90301-2. [DOI] [PubMed] [Google Scholar]
  10. Flügge U. I., Weber A. A rapid method for measuring organelle-specific substrate transport in homogenates from plant tissues. Planta. 1994;194(2):181–185. [PubMed] [Google Scholar]
  11. Heldt H. W., Flügge U. I., Borchert S. Diversity of specificity and function of phosphate translocators in various plastids. Plant Physiol. 1991 Feb;95(2):341–343. doi: 10.1104/pp.95.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herrmann K. M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell. 1995 Jul;7(7):907–919. doi: 10.1105/tpc.7.7.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Journet E. P., Douce R. Enzymic capacities of purified cauliflower bud plastids for lipid synthesis and carbohydrate metabolism. Plant Physiol. 1985 Oct;79(2):458–467. doi: 10.1104/pp.79.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kampfenkel K., Möhlmann T., Batz O., Van Montagu M., Inzé D., Neuhaus H. E. Molecular characterization of an Arabidopsis thaliana cDNA encoding a novel putative adenylate translocator of higher plants. FEBS Lett. 1995 Nov 6;374(3):351–355. doi: 10.1016/0014-5793(95)01143-3. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Loddenkötter B., Kammerer B., Fischer K., Flügge U. I. Expression of the functional mature chloroplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged protein by a single metal-affinity chromatography step. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2155–2159. doi: 10.1073/pnas.90.6.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miernyk J. A., Dennis D. T. A Developmental Analysis of the Enolase Isozymes from Ricinus communis. Plant Physiol. 1992 Jun;99(2):748–750. doi: 10.1104/pp.99.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Russell P., Nurse P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell. 1986 Apr 11;45(1):145–153. doi: 10.1016/0092-8674(86)90546-5. [DOI] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schulz B., Frommer W. B., Flügge U. I., Hummel S., Fischer K., Willmitzer L. Expression of the triose phosphate translocator gene from potato is light dependent and restricted to green tissues. Mol Gen Genet. 1993 Apr;238(3):357–361. doi: 10.1007/BF00291994. [DOI] [PubMed] [Google Scholar]
  21. Schulze-Siebert D., Heineke D., Scharf H., Schultz G. Pyruvate-Derived Amino Acids in Spinach Chloroplasts : Synthesis and Regulation during Photosynthetic Carbon Metabolism. Plant Physiol. 1984 Oct;76(2):465–471. doi: 10.1104/pp.76.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Singh B. K., Shaner D. L. Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. Plant Cell. 1995 Jul;7(7):935–944. doi: 10.1105/tpc.7.7.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van der Straeten D., Rodrigues-Pousada R. A., Goodman H. M., Van Montagu M. Plant enolase: gene structure, expression, and evolution. Plant Cell. 1991 Jul;3(7):719–735. doi: 10.1105/tpc.3.7.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weber A., Menzlaff E., Arbinger B., Gutensohn M., Eckerskorn C., Flügge U. I. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry. 1995 Feb 28;34(8):2621–2627. doi: 10.1021/bi00008a028. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES