Abstract
The Clean Air Act is the basic U.S. Federal law for controlling air pollution. Under Sections 108 and 109, primary (health) national ambient air quality standards (NAAQS) can be set for pollutants which are ubiquitous in the ambient air. The standard-setting process includes a comprehensive summary of scientific information on effects and controls in criteria and control techniques, and the selection of an appropriate standard which, in the judgment of the Administrator, protects the health of normal and susceptible subpopulations with an adequate margin of safety. Determining the adequacy of existing NAAQS or establishing new standards requires that the scientific information base be evaluated to assess pollutant effects on public health. Improvements in this process can be accomplished not only through new health effects research, but also through improved use of currently available data. The commonality joining these two efforts is in the area of extrapolation modeling, which is the topic of this paper. Extrapolation modeling involves determining the effective dose delivered to the target organ of several species and the sensitivity of the target organ to that dose so that effective pollutant concentrations can be estimated across species. This in turn allows greater utilization of the results from animals in making judgments about the effects in man from exposure to a given pollutant.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen I. B., Lundqvist G. R., Jensen P. L., Proctor D. F. Human response to controlled levels of sulfur dioxide. Arch Environ Health. 1974 Jan;28(1):31–39. doi: 10.1080/00039896.1974.10666429. [DOI] [PubMed] [Google Scholar]
- Bates D. V., Fish B. R., Hatch T. F., Mercer T. T., Morrow P. E. Deposition and retention models for internal dosimetry of the human respiratory tract. Task group on lung dynamics. Health Phys. 1966 Feb;12(2):173–207. [PubMed] [Google Scholar]
- Brain J. D. The uptake of inhaled gases by the nose. Ann Otol Rhinol Laryngol. 1970 Jun;79(3):529–539. doi: 10.1177/000348947007900315. [DOI] [PubMed] [Google Scholar]
- Corn M., Kotsko N., Stanton D. Mass-transfer coefficient for sulphur dioxide and nitrogen dioxide removal in cat upper respiratory tract. Ann Occup Hyg. 1976 Jul;19(1):1–12. doi: 10.1093/annhyg/19.1.1. [DOI] [PubMed] [Google Scholar]
- DALHAMN T., STRANDBERG L. Acute effect of sulphur dioxide on the rate of ciliary beat in the trachea of rabbit, in vivo and in vitro, with studies on the absorptional capacity of the nasal cavity. Int J Air Water Pollut. 1961 Sep;4:154–167. [PubMed] [Google Scholar]
- DuBois A. B., Rogers R. M. Respiratory factors determining the tissue concentrations of inhaled toxic substances. Respir Physiol. 1968 Jun;5(1):34–52. doi: 10.1016/0034-5687(68)90075-3. [DOI] [PubMed] [Google Scholar]
- Dungworth D. L., Castleman W. L., Chow C. K., Mellick P. W., Mustafa M. G., Tarkington B., Tyler W. S. Effect of ambient levels of ozone on monkeys. Fed Proc. 1975 Jul;34(8):1670–1674. [PubMed] [Google Scholar]
- Fenters J. D., Findlay J. C., Port C. D., Ehrlich R., Coffin D. L. Chronic exposure to nitrogen dioxide. Arch Environ Health. 1973 Aug;27(2):85–89. doi: 10.1080/00039896.1973.10666324. [DOI] [PubMed] [Google Scholar]
- Frank N. R., Yoder R. E., Brain J. D., Yokoyama E. SO2 (35S labeled) absorption by the nose and mouth under conditions of varying concentration and flow. Arch Environ Health. 1969 Mar;18(3):315–322. doi: 10.1080/00039896.1969.10665414. [DOI] [PubMed] [Google Scholar]
- Gardner D. E., Miller F. J., Blommer E. J., Coffin D. L. Influence of exposure mode on the toxicity of NO2. Environ Health Perspect. 1979 Jun;30:23–29. doi: 10.1289/ehp.793023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein B. D., Melia R. J., Chinn S., Florey C. V., Clark D., John H. H. The relation between respiratory illness in primary schoolchildren and the use of gas for cooking--II. Factors affecting nitrogen dioxide levels in the home. Int J Epidemiol. 1979 Dec;8(4):339–345. doi: 10.1093/ije/8.4.339. [DOI] [PubMed] [Google Scholar]
- Horsfield K., Cumming G. Morphology of the bronchial tree in man. J Appl Physiol. 1968 Mar;24(3):373–383. doi: 10.1152/jappl.1968.24.3.373. [DOI] [PubMed] [Google Scholar]
- Horsfield K., Dart G., Olson D. E., Filley G. F., Cumming G. Models of the human bronchial tree. J Appl Physiol. 1971 Aug;31(2):207–217. doi: 10.1152/jappl.1971.31.2.207. [DOI] [PubMed] [Google Scholar]
- Hyde D., Orthoefer J., Dungworth D., Tyler W., Carter R., Lum H. Morphometric and morphologic evaluation of pulmonary lesions in beagle dogs chronically exposed to high ambient levels of air pollutants. Lab Invest. 1978 Apr;38(4):455–469. [PubMed] [Google Scholar]
- Kliment V. Similarity and dimensional analysis, evaluation of aerosol deposition in the lungs of laboratory animals and man. Folia Morphol (Praha) 1973;21(1):59–64. [PubMed] [Google Scholar]
- Melia R. J., Florey C. D., Altman D. G., Swan A. V. Association between gas cooking and respiratory disease in children. Br Med J. 1977 Jul 16;2(6080):149–152. doi: 10.1136/bmj.2.6080.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melia R. J., Florey C. V., Chinn S. The relation between respiratory illness in primary schoolchildren and the use of gas for cooking--I. Results from a national survey. Int J Epidemiol. 1979 Dec;8(4):333–338. doi: 10.1093/ije/8.4.333. [DOI] [PubMed] [Google Scholar]
- Melville G. N. Changes in specific airway conductance in healthy volunteers following nasal and oral inhalation of SO2. West Indian Med J. 1970 Dec;19(4):231–235. [PubMed] [Google Scholar]
- Miller F. J., McNeal C. A., Kirtz J. M., Gardner D. E., Coffin D. L., Menzel D. B. Nasopharyngeal removal of ozone in rabbits and guinea pigs. Toxicology. 1979 Nov;14(3):273–281. doi: 10.1016/0300-483x(79)90009-x. [DOI] [PubMed] [Google Scholar]
- Miller F. J., Menzel D. B., Coffin D. L. Similarity between man and laboratory animals in regional pulmonary deposition of ozone. Environ Res. 1978 Aug;17(1):84–101. doi: 10.1016/0013-9351(78)90064-6. [DOI] [PubMed] [Google Scholar]
- Moorman W. J., Chmiel J. J., Stara J. F., Lewis T. R. Comparative decomposition of ozone in the nasopharynx of beagles: acute vs chronic exposure. Arch Environ Health. 1973 Mar;26(3):153–155. doi: 10.1080/00039896.1973.10666243. [DOI] [PubMed] [Google Scholar]
- P'an A. Y., Béland J., Jegier Z. Ozone-induced arterial lesions. Arch Environ Health. 1972 Apr;24(4):229–232. doi: 10.1080/00039896.1972.10666075. [DOI] [PubMed] [Google Scholar]
- Phalen R. F., Yeh H. C., Schum G. M., Raabe O. G. Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat Rec. 1978 Feb;190(2):167–176. doi: 10.1002/ar.1091900202. [DOI] [PubMed] [Google Scholar]
- Scherer P. W., Shendalman L. H., Greene N. M., Bouhuys A. Measurement of axial diffusivities in a model of the bronchial airways. J Appl Physiol. 1975 Apr;38(4):719–723. doi: 10.1152/jappl.1975.38.4.719. [DOI] [PubMed] [Google Scholar]
- Speizer F. E., Ferris B., Jr, Bishop Y. M., Spengler J. Respiratory disease rates and pulmonary function in children associated with NO2 exposure. Am Rev Respir Dis. 1980 Jan;121(1):3–10. doi: 10.1164/arrd.1980.121.1.3. [DOI] [PubMed] [Google Scholar]
- Speizer F. E., Frank N. R. The uptake and release of SO2 by the human nose. Arch Environ Health. 1966 Jun;12(6):725–728. doi: 10.1080/00039896.1966.10664471. [DOI] [PubMed] [Google Scholar]
- Stephens R. J., Sloan M. F., Evans M. J., Freeman G. Alveolar type 1 cell response to exposure to 0.5 PPM O3 for short periods. Exp Mol Pathol. 1974 Feb;20(1):11–23. doi: 10.1016/0014-4800(74)90039-2. [DOI] [PubMed] [Google Scholar]
- Vaughan T. R., Jr, Jennelle L. F., Lewis T. R. Long-term exposure to low levels of air pollutants. Effects on pulmonary function in the beagle. Arch Environ Health. 1969 Jul;19(1):45–50. doi: 10.1080/00039896.1969.10666803. [DOI] [PubMed] [Google Scholar]
- Yokoyama E., Frank R. Respiratory uptake of ozone in dogs. Arch Environ Health. 1972 Aug;25(2):132–138. doi: 10.1080/00039896.1972.10666149. [DOI] [PubMed] [Google Scholar]
