Abstract
Salicylic acid (SA) induces resistance to all plant pathogens, including bacteria, fungi, and viruses, but the mechanism by which SA engenders resistance to viruses is not known. Pretreatment of tobacco mosaic virus (TMV)-susceptible (nn genotype) tobacco tissue with SA reduced the levels of viral RNAs and viral coat protein accumulating after inoculation with TMV. Viral RNAs were not affected equally, suggesting that SA treatment interferes with TMV replication. Salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial alternative oxidase, antagonized both SA-induced resistance to TMV in nn genotype plants and SA-induced acquired resistance in resistant (NN genotype) tobacco. SHAM did not inhibit induction of the PR-1 pathogenesis-related protein or induction of resistance to Erwinia carotovora or Botrytis cinerea by SA. This indicates that SA induces resistance to TMV via a novel SHAM-sensitive signal transduction pathway (potentially involving alternative oxidase), which is distinct from that leading to resistance to bacteria and fungi.
Full Text
The Full Text of this article is available as a PDF (3.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander D., Goodman R. M., Gut-Rella M., Glascock C., Weymann K., Friedrich L., Maddox D., Ahl-Goy P., Luntz T., Ward E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7327–7331. doi: 10.1073/pnas.90.15.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry J. O., Nikolau B. J., Carr J. P., Klessig D. F. Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons. Mol Cell Biol. 1985 Sep;5(9):2238–2246. doi: 10.1128/mcb.5.9.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
- Carr J. P., Dixon D. C., Nikolau B. J., Voelkerding K. V., Klessig D. F. Synthesis and localization of pathogenesis-related proteins in tobacco. Mol Cell Biol. 1987 Apr;7(4):1580–1583. doi: 10.1128/mcb.7.4.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutt J. R., Harpster M. H., Dixon D. C., Carr J. P., Dunsmuir P., Klessig D. F. Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene. Virology. 1989 Nov;173(1):89–97. doi: 10.1016/0042-6822(89)90224-9. [DOI] [PubMed] [Google Scholar]
- Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J. A central role of salicylic Acid in plant disease resistance. Science. 1994 Nov 18;266(5188):1247–1250. doi: 10.1126/science.266.5188.1247. [DOI] [PubMed] [Google Scholar]
- Golemboski D. B., Lomonossoff G. P., Zaitlin M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6311–6315. doi: 10.1073/pnas.87.16.6311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green R., Fluhr R. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species. Plant Cell. 1995 Feb;7(2):203–212. doi: 10.1105/tpc.7.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapulnik Y., Yalpani N., Raskin I. Salicylic Acid induces cyanide-resistant respiration in tobacco cell-suspension cultures. Plant Physiol. 1992 Dec;100(4):1921–1926. doi: 10.1104/pp.100.4.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linthorst H. J., Meuwissen R. L., Kauffmann S., Bol J. F. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell. 1989 Mar;1(3):285–291. doi: 10.1105/tpc.1.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malamy J., Carr J. P., Klessig D. F., Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. doi: 10.1126/science.250.4983.1002. [DOI] [PubMed] [Google Scholar]
- McIntosh L. Molecular biology of the alternative oxidase. Plant Physiol. 1994 Jul;105(3):781–786. doi: 10.1104/pp.105.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niderman T., Genetet I., Bruyère T., Gees R., Stintzi A., Legrand M., Fritig B., Mösinger E. Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol. 1995 May;108(1):17–27. doi: 10.1104/pp.108.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osman T. A., Buck K. W. Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase. J Virol. 1996 Sep;70(9):6227–6234. doi: 10.1128/jvi.70.9.6227-6234.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preisig C. L., Kuć J. A. Inhibition by Salicylhydroxamic Acid, BW755C, Eicosatetraynoic Acid, and Disulfiram of Hypersensitive Resistance Elicited by Arachidonic Acid or Poly-l-Lysine in Potato Tuber. Plant Physiol. 1987 Jul;84(3):891–894. doi: 10.1104/pp.84.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSS A. F. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology. 1961 Jul;14:329–339. doi: 10.1016/0042-6822(61)90318-x. [DOI] [PubMed] [Google Scholar]
- ROSS A. F. Systemic acquired resistance induced by localized virus infections in plants. Virology. 1961 Jul;14:340–358. doi: 10.1016/0042-6822(61)90319-1. [DOI] [PubMed] [Google Scholar]
- Raskin I., Ehmann A., Melander W. R., Meeuse B. J. Salicylic Acid: a natural inducer of heat production in arum lilies. Science. 1987 Sep 25;237(4822):1601–1602. doi: 10.1126/science.237.4822.1601. [DOI] [PubMed] [Google Scholar]
- Rhoads D. M., McIntosh L. The salicylic acid-inducible alternative oxidase gene aox1 and genes encoding pathogenesis-related proteins share regions of sequence similarity in their promoters. Plant Mol Biol. 1993 Feb;21(4):615–624. doi: 10.1007/BF00014545. [DOI] [PubMed] [Google Scholar]
- Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H. Y., Hunt M. D. Systemic Acquired Resistance. Plant Cell. 1996 Oct;8(10):1809–1819. doi: 10.1105/tpc.8.10.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staskawicz B. J., Ausubel F. M., Baker B. J., Ellis J. G., Jones J. D. Molecular genetics of plant disease resistance. Science. 1995 May 5;268(5211):661–667. doi: 10.1126/science.7732374. [DOI] [PubMed] [Google Scholar]
- Vanlerberghe G. C., Vanlerberghe A. E., McIntosh L. Molecular Genetic Alteration of Plant Respiration (Silencing and Overexpression of Alternative Oxidase in Transgenic Tobacco). Plant Physiol. 1994 Dec;106(4):1503–1510. doi: 10.1104/pp.106.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitham S., Dinesh-Kumar S. P., Choi D., Hehl R., Corr C., Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994 Sep 23;78(6):1101–1115. doi: 10.1016/0092-8674(94)90283-6. [DOI] [PubMed] [Google Scholar]