Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Apr;9(4):597–609. doi: 10.1105/tpc.9.4.597

The Rate of Phaseolin Assembly Is Controlled by the Glucosylation State of Its N-Linked Oligosaccharide Chains.

F Lupattelli 1, E Pedrazzini 1, R Bollini 1, A Vitale 1, A Ceriotti 1
PMCID: PMC156942  PMID: 12237365

Abstract

Many of the proteins that are translocated into the endoplasmic reticulum are glycosylated with the addition of a 14-saccharide core unit (Glc3Man9GlcNAc2) to specific asparagine residues of the nascent polypeptide. Glucose residues are then removed by endoplasmic reticulum-located glucosidases, with diglucosylated and monoglucosylated intermediates being formed. In this study, we used a cell-free system constituted of wheat germ extract and bean microsomes to examine the role of glucose trimming in the structural maturation of phaseolin, a trimeric glycoprotein that accumulates in the protein storage vacuoles of bean seeds. Removal of glucose residues from the N-linked chains of phaseolin was blocked by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin. If glucose trimming was not allowed to occur, the assembly of phaseolin was accelerated. Conversely, polypeptides bearing partially trimmed glycans were unable to form trimers. The effect of castanospermine on the rate of assembly was much more pronounced for phaseolin polypeptides that have two glycans but was also evident when a single glycan chain was present, indicating that glycan clustering can modulate the effect of glucose trimming on the rate of trimer formation. Therefore, the position of glycan chains and their accessibility to the action of glucosidases can be fundamental elements in the control of the structural maturation of plant glycoproteins.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balow J. P., Weissman J. D., Kearse K. P. Unique expression of major histocompatibility complex class I proteins in the absence of glucose trimming and calnexin association. J Biol Chem. 1995 Dec 1;270(48):29025–29029. doi: 10.1074/jbc.270.48.29025. [DOI] [PubMed] [Google Scholar]
  2. Bollini R., Vitale A., Chrispeels M. J. In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: evidence for two glycosylation steps. J Cell Biol. 1983 Apr;96(4):999–1007. doi: 10.1083/jcb.96.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  4. Ceriotti A., Colman A. Trimer formation determines the rate of influenza virus haemagglutinin transport in the early stages of secretion in Xenopus oocytes. J Cell Biol. 1990 Aug;111(2):409–420. doi: 10.1083/jcb.111.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ceriotti A., Pedrazzini E., Fabbrini M. S., Zoppe M., Bollini R., Vitale A. Expression of the wild-type and mutated vacuolar storage protein phaseolin in Xenopus oocytes reveals relationships between assembly and intracellular transport. Eur J Biochem. 1991 Dec 18;202(3):959–968. doi: 10.1111/j.1432-1033.1991.tb16456.x. [DOI] [PubMed] [Google Scholar]
  6. Chen F., Hayes P. M., Mulrooney D. M., Pan A. Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell. 1994 Jun;6(6):835–843. doi: 10.1105/tpc.6.6.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denecke J., Carlsson L. E., Vidal S., Höglund A. S., Ek B., van Zeijl M. J., Sinjorgo K. M., Palva E. T. The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell. 1995 Apr;7(4):391–406. doi: 10.1105/tpc.7.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammond C., Braakman I., Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913–917. doi: 10.1073/pnas.91.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hebert D. N., Foellmer B., Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 1995 May 5;81(3):425–433. doi: 10.1016/0092-8674(95)90395-x. [DOI] [PubMed] [Google Scholar]
  10. Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell. 1994 Mar;5(3):253–265. doi: 10.1091/mbc.5.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herscovics A., Orlean P. Glycoprotein biosynthesis in yeast. FASEB J. 1993 Apr 1;7(6):540–550. doi: 10.1096/fasebj.7.6.8472892. [DOI] [PubMed] [Google Scholar]
  12. Holst B., Bruun A. W., Kielland-Brandt M. C., Winther J. R. Competition between folding and glycosylation in the endoplasmic reticulum. EMBO J. 1996 Jul 15;15(14):3538–3546. [PMC free article] [PubMed] [Google Scholar]
  13. Hori H., Elbein A. D. Processing of N-linked oligosaccharides in soybean cultured cells. Arch Biochem Biophys. 1983 Feb 1;220(2):415–425. doi: 10.1016/0003-9861(83)90431-9. [DOI] [PubMed] [Google Scholar]
  14. Huang L., Franklin A. E., Hoffman N. E. Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein. J Biol Chem. 1993 Mar 25;268(9):6560–6566. [PubMed] [Google Scholar]
  15. Kaushal G. P., Pastuszak I., Hatanaka K., Elbein A. D. Purification to homogeneity and properties of glucosidase II from mung bean seedlings and suspension-cultured soybean cells. J Biol Chem. 1990 Sep 25;265(27):16271–16279. [PubMed] [Google Scholar]
  16. Kiefhaber T., Rudolph R., Kohler H. H., Buchner J. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (N Y) 1991 Sep;9(9):825–829. doi: 10.1038/nbt0991-825. [DOI] [PubMed] [Google Scholar]
  17. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  19. Lau J. T., Welply J. K., Shenbagamurthi P., Naider F., Lennarz W. J. Substrate recognition by oligosaccharyl transferase. Inhibition of co-translational glycosylation by acceptor peptides. J Biol Chem. 1983 Dec 25;258(24):15255–15260. [PubMed] [Google Scholar]
  20. Lawrence M. C., Suzuki E., Varghese J. N., Davis P. C., Van Donkelaar A., Tulloch P. A., Colman P. M. The three-dimensional structure of the seed storage protein phaseolin at 3 A resolution. EMBO J. 1990 Jan;9(1):9–15. doi: 10.1002/j.1460-2075.1990.tb08074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lerouge P., Fichette-Lainé A. C., Chekkafi A., Avidgor V., Faye L. N-linked oligosaccharide processing is not necessary for glycoprotein secretion in plants. Plant J. 1996 Oct;10(4):713–719. doi: 10.1046/j.1365-313x.1996.10040713.x. [DOI] [PubMed] [Google Scholar]
  22. Menegazzi P., Guzzo F., Baldan B., Mariani P., Treves S. Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1130–1135. doi: 10.1006/bbrc.1993.1167. [DOI] [PubMed] [Google Scholar]
  23. Peterson J. R., Ora A., Van P. N., Helenius A. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell. 1995 Sep;6(9):1173–1184. doi: 10.1091/mbc.6.9.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Slightom J. L., Drong R. F., Klassy R. C., Hoffman L. M. Nucleotide sequences from phaseolin cDNA clones: the major storage proteins from Phaseolus vulgaris are encoded by two unique gene families. Nucleic Acids Res. 1985 Sep 25;13(18):6483–6498. doi: 10.1093/nar/13.18.6483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sousa M., Parodi A. J. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 1995 Sep 1;14(17):4196–4203. doi: 10.1002/j.1460-2075.1995.tb00093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Staneloni R. J., Tolmasky M. E., Petriella C., Leloir L. F. Transfer of oligosaccharide to protein from a lipid intermediate in plants. Plant Physiol. 1981 Nov;68(5):1175–1179. doi: 10.1104/pp.68.5.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stanley P. Glycosylation mutants of animal cells. Annu Rev Genet. 1984;18:525–552. doi: 10.1146/annurev.ge.18.120184.002521. [DOI] [PubMed] [Google Scholar]
  28. Sturm A., Johnson K. D., Szumilo T., Elbein A. D., Chrispeels M. J. Subcellular localization of glycosidases and glycosyltransferases involved in the processing of N-linked oligosaccharides. Plant Physiol. 1987 Nov;85(3):741–745. doi: 10.1104/pp.85.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sturm A., Van Kuik J. A., Vliegenthart J. F., Chrispeels M. J. Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin. J Biol Chem. 1987 Oct 5;262(28):13392–13403. [PubMed] [Google Scholar]
  30. Szumilo T., Kaushal G. P., Elbein A. D. Purification and properties of glucosidase I from mung bean seedlings. Arch Biochem Biophys. 1986 Jun;247(2):261–271. doi: 10.1016/0003-9861(86)90583-7. [DOI] [PubMed] [Google Scholar]
  31. Trombetta S. E., Bosch M., Parodi A. J. Glucosylation of glycoproteins by mammalian, plant, fungal, and trypanosomatid protozoa microsomal membranes. Biochemistry. 1989 Oct 3;28(20):8108–8116. doi: 10.1021/bi00446a022. [DOI] [PubMed] [Google Scholar]
  32. Vassilakos A., Cohen-Doyle M. F., Peterson P. A., Jackson M. R., Williams D. B. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 1996 Apr 1;15(7):1495–1506. [PMC free article] [PubMed] [Google Scholar]
  33. Vitale A., Bielli A., Ceriotti A. The Binding Protein Associates with Monomeric Phaseolin. Plant Physiol. 1995 Apr;107(4):1411–1418. doi: 10.1104/pp.107.4.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vitale A., Zoppè M., Bollini R. Mannose analog 1-deoxymannojirimycin inhibits the Golgi-mediated processing of bean storage glycoproteins. Plant Physiol. 1989 Apr;89(4):1079–1084. doi: 10.1104/pp.89.4.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ware F. E., Vassilakos A., Peterson P. A., Jackson M. R., Lehrman M. A., Williams D. B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem. 1995 Mar 3;270(9):4697–4704. doi: 10.1074/jbc.270.9.4697. [DOI] [PubMed] [Google Scholar]
  36. von Schaewen A., Sturm A., O'Neill J., Chrispeels M. J. Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol. 1993 Aug;102(4):1109–1118. doi: 10.1104/pp.102.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES