Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Plant Cell logoLink to The Plant Cell
. 1997 Apr;9(4):653–664. doi: 10.1105/tpc.9.4.653

A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato.

R Subramaniam 1, C Després 1, N Brisson 1
PMCID: PMC156946  PMID: 9144967

Abstract

The elicitor-induced activation of the potato pathogenesis-related gene PR-10a is positively controlled by a protein kinase(s) that affects the binding of the nuclear factors PBF-1 (for PR-10a binding factor-1) and PBR-2 to an elicitor response element (ERE). In this study, we have identified a kinase that has properties similar to the conventional isoenzymes of the mammalian protein kinase C (PKC) family. the treatment of potato tuber discs with specific inhibitors of PKC abolished the elicitor-induced binding of the nuclear factor PBF-2 to the ERE. This correlated with a reduction in the accumulation of the PR-10a protein. In contrast, treatment of the tuber discs with 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of PKC, led to an increase in binding of PBF-2 to the ERE and the corresponding increase in the level of the PR-10a protein, mimicking the effect seen with the elicitor arachidonic acid. Biochemical characterization of proteins extracted from the particulate fraction of potato tubers demonstrated that a kinase belonging to the conventional isoforms of PKC is present. This was confirmed by immunoprecipitation with antibodies specific to the conventional isoforms of human PKC and in-gel kinase assays. The ability of the immunoprecipitates to phosphorylate the alpha-peptide (a PKC specific substrate) in the presence of the coactivators calcium, phosphatidylserine, and TPA strongly suggested that the immunoprecipitated kinase is similar to the kinase characterized biochemically. Finally, the similar effects of the various modulators of PKC activity on the elicitor-induced resistance against a compatible race of Phytophthora infestans implicate this kinase in the overall defense response in potato.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blobe G. C., Khan W. A., Hannun Y. A. Protein kinase C: cellular target of the second messenger arachidonic acid? Prostaglandins Leukot Essent Fatty Acids. 1995 Feb-Mar;52(2-3):129–135. doi: 10.1016/0952-3278(95)90011-x. [DOI] [PubMed] [Google Scholar]
  2. Blobe G. C., Obeid L. M., Hannun Y. A. Regulation of protein kinase C and role in cancer biology. Cancer Metastasis Rev. 1994 Dec;13(3-4):411–431. doi: 10.1007/BF00666107. [DOI] [PubMed] [Google Scholar]
  3. Bostock R. M., Kuc J. A., Laine R. A. Eicosapentaenoic and Arachidonic Acids from Phytophthora infestans Elicit Fungitoxic Sesquiterpenes in the Potato. Science. 1981 Apr 3;212(4490):67–69. doi: 10.1126/science.212.4490.67. [DOI] [PubMed] [Google Scholar]
  4. Bruns R. F., Miller F. D., Merriman R. L., Howbert J. J., Heath W. F., Kobayashi E., Takahashi I., Tamaoki T., Nakano H. Inhibition of protein kinase C by calphostin C is light-dependent. Biochem Biophys Res Commun. 1991 Apr 15;176(1):288–293. doi: 10.1016/0006-291x(91)90922-t. [DOI] [PubMed] [Google Scholar]
  5. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  6. Dekker L. V., Parker P. J. Protein kinase C--a question of specificity. Trends Biochem Sci. 1994 Feb;19(2):73–77. doi: 10.1016/0968-0004(94)90038-8. [DOI] [PubMed] [Google Scholar]
  7. Despres C., Subramaniam R., Matton D. P., Brisson N. The Activation of the Potato PR-10a Gene Requires the Phosphorylation of the Nuclear Factor PBF-1. Plant Cell. 1995 May;7(5):589–598. doi: 10.1105/tpc.7.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duclos B., Marcandier S., Cozzone A. J. Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol. 1991;201:10–21. doi: 10.1016/0076-6879(91)01004-l. [DOI] [PubMed] [Google Scholar]
  9. Ecker J. R. The ethylene signal transduction pathway in plants. Science. 1995 May 5;268(5211):667–675. doi: 10.1126/science.7732375. [DOI] [PubMed] [Google Scholar]
  10. Grosskopf D. G., Felix G., Boller T. K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett. 1990 Nov 26;275(1-2):177–180. doi: 10.1016/0014-5793(90)81466-2. [DOI] [PubMed] [Google Scholar]
  11. Hannun Y. A., Loomis C. R., Bell R. M. Activation of protein kinase C by Triton X-100 mixed micelles containing diacylglycerol and phosphatidylserine. J Biol Chem. 1985 Aug 25;260(18):10039–10043. [PubMed] [Google Scholar]
  12. Hirayama T., Ohto C., Mizoguchi T., Shinozaki K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3903–3907. doi: 10.1073/pnas.92.9.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huang F. L., Yoshida Y., Cunha-Melo J. R., Beaven M. A., Huang K. P. Differential down-regulation of protein kinase C isozymes. J Biol Chem. 1989 Mar 5;264(7):4238–4243. [PubMed] [Google Scholar]
  14. Hubbard M. J., Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci. 1993 May;18(5):172–177. doi: 10.1016/0968-0004(93)90109-z. [DOI] [PubMed] [Google Scholar]
  15. Hug H., Sarre T. F. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993 Apr 15;291(Pt 2):329–343. doi: 10.1042/bj2910329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karin M. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol. 1994 Jun;6(3):415–424. doi: 10.1016/0955-0674(94)90035-3. [DOI] [PubMed] [Google Scholar]
  17. Khan W. A., Mascarella S. W., Lewin A. H., Wyrick C. D., Carroll F. I., Hannun Y. A. Use of D-erythro-sphingosine as a pharmacological inhibitor of protein kinase C in human platelets. Biochem J. 1991 Sep 1;278(Pt 2):387–392. doi: 10.1042/bj2780387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kitano T., Go M., Kikkawa U., Nishizuka Y. Assay and purification of protein kinase C. Methods Enzymol. 1986;124:349–352. doi: 10.1016/0076-6879(86)24026-4. [DOI] [PubMed] [Google Scholar]
  19. Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marmé D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993 Jul 15;364(6434):249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
  20. Kosaka Y., Ogita K., Ase K., Nomura H., Kikkawa U., Nishizuka Y. The heterogeneity of protein kinase C in various rat tissues. Biochem Biophys Res Commun. 1988 Mar 30;151(3):973–981. doi: 10.1016/s0006-291x(88)80461-3. [DOI] [PubMed] [Google Scholar]
  21. Legendre L., Yueh Y. G., Crain R., Haddock N., Heinstein P. F., Low P. S. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem. 1993 Nov 25;268(33):24559–24563. [PubMed] [Google Scholar]
  22. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  23. Nanmori T., Taguchi W., Kinugasa M., Oji Y., Sahara S., Fukami Y., Kikkawa U. Purification and characterization of protein kinase C from a higher plant, Brassica campestris L. Biochem Biophys Res Commun. 1994 Aug 30;203(1):311–318. doi: 10.1006/bbrc.1994.2183. [DOI] [PubMed] [Google Scholar]
  24. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  25. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995 Apr;9(7):484–496. [PubMed] [Google Scholar]
  26. Shi J., Gonzales R. A., Bhattacharyya M. K. Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean. Plant J. 1995 Sep;8(3):381–390. doi: 10.1046/j.1365-313x.1995.08030381.x. [DOI] [PubMed] [Google Scholar]
  27. Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995 Dec 15;270(5243):1804–1806. doi: 10.1126/science.270.5243.1804. [DOI] [PubMed] [Google Scholar]
  28. Sorimachi H., Saido T. C., Suzuki K. New era of calpain research. Discovery of tissue-specific calpains. FEBS Lett. 1994 Apr 18;343(1):1–5. doi: 10.1016/0014-5793(94)80595-4. [DOI] [PubMed] [Google Scholar]
  29. Suzuki K., Shinshi H. Transient Activation and Tyrosine Phosphorylation of a Protein Kinase in Tobacco Cells Treated with a Fungal Elicitor. Plant Cell. 1995 May;7(5):639–647. doi: 10.1105/tpc.7.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  31. Trewavas A., Gilroy S. Signal transduction in plant cells. Trends Genet. 1991 Nov-Dec;7(11-12):356–361. doi: 10.1016/0168-9525(91)90255-o. [DOI] [PubMed] [Google Scholar]
  32. Wetsel W. C., Khan W. A., Merchenthaler I., Rivera H., Halpern A. E., Phung H. M., Negro-Vilar A., Hannun Y. A. Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol. 1992 Apr;117(1):121–133. doi: 10.1083/jcb.117.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xing T., Higgins V. J., Blumwald E. Regulation of Plant Defense Response to Fungal Pathogens: Two Types of Protein Kinases in the Reversible Phosphorylation of the Host Plasma Membrane H+-ATPase. Plant Cell. 1996 Mar;8(3):555–564. doi: 10.1105/tpc.8.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamamoto Y. T., Conkling M. A., Sussex I. M., Irish V. F. An Arabidopsis cDNA related to animal phosphoinositide-specific phospholipase C genes. Plant Physiol. 1995 Mar;107(3):1029–1030. doi: 10.1104/pp.107.3.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Young S. A., Wang X., Leach J. E. Changes in the Plasma Membrane Distribution of Rice Phospholipase D during Resistant Interactions with Xanthomonas oryzae pv oryzae. Plant Cell. 1996 Jun;8(6):1079–1090. doi: 10.1105/tpc.8.6.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhou J., Loh Y. T., Bressan R. A., Martin G. B. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell. 1995 Dec 15;83(6):925–935. doi: 10.1016/0092-8674(95)90208-2. [DOI] [PubMed] [Google Scholar]
  37. van der Hoeven P. C., Siderius M., Korthout H. A., Drabkin A. V., de Boer A. H. A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor. Plant Physiol. 1996 Jul;111(3):857–865. doi: 10.1104/pp.111.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES