Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 May;9(5):689–701. doi: 10.1105/tpc.9.5.689

Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall.

S R Turner 1, C R Somerville 1
PMCID: PMC156949  PMID: 9165747

Abstract

Recessive mutations at three loci cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis. These irregular xylem (irx) mutations were identified by screening plants from a mutagenized population by microscopic examination of stem sections. The xylem cell defect was associated with an up to eightfold reduction in the total amount of cellulose in mature inflorescence stems. The amounts of cell wall-associated phenolics and polysaccharides were unaffected by the mutations. Examination of the cell walls by using electron microscopy demonstrated that the decreases in cellulose content of irx lines resulted in an alteration of the spatial organization of cell wall material. This suggests that a normal pattern of cellulose deposition may be required for assembly of lignin or polysaccharides. The reduced cellulose content of the stems also resulted in a decrease in stiffness of the stem material. This is consistent with the irregular xylem phenotype and suggests that the walls of irx plants are not resistant to compressive forces. Because lignin was implicated previously as a major factor in resistance to compressive forces, these results suggest either that cellulose has a direct role in providing resistance to compressive forces or that it is required for the development of normal lignin structure. The irx plants had a slight reduction in growth rate and stature but were otherwise normal in appearance. The mutations should be useful in facilitating the identification of factors that control the synthesis and deposition of cellulose and other cell wall components.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrhein N., Frank G., Lemm G., Luhmann H. B. Inhibition of lignin formation by L-alpha-aminooxy-beta-phenylpropionic acid, an inhibitor of phenylalanine ammonia-lyase. Eur J Cell Biol. 1983 Jan;29(2):139–144. [PubMed] [Google Scholar]
  2. Atalla R. H., Agarwal U. P. Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science. 1985 Feb 8;227(4687):636–638. doi: 10.1126/science.227.4687.636. [DOI] [PubMed] [Google Scholar]
  3. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  4. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  5. Delmer D. P., Amor Y. Cellulose biosynthesis. Plant Cell. 1995 Jul;7(7):987–1000. doi: 10.1105/tpc.7.7.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Houtman C. J., Atalla R. H. Cellulose-Lignin Interactions (A Computational Study). Plant Physiol. 1995 Mar;107(3):977–984. doi: 10.1104/pp.107.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kokubo A., Kuraishi S., Sakurai N. Culm strength of barley : correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol. 1989 Nov;91(3):876–882. doi: 10.1104/pp.91.3.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kokubo A., Sakurai N., Kuraishi S., Takeda K. Culm Brittleness of Barley (Hordeum vulgare L.) Mutants Is Caused by Smaller Number of Cellulose Molecules in Cell Wall. Plant Physiol. 1991 Oct;97(2):509–514. doi: 10.1104/pp.97.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  10. Lewis N. G., Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol. 1990;41:455–496. doi: 10.1146/annurev.pp.41.060190.002323. [DOI] [PubMed] [Google Scholar]
  11. Morrison I. M. A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops. J Sci Food Agric. 1972 Apr;23(4):455–463. doi: 10.1002/jsfa.2740230405. [DOI] [PubMed] [Google Scholar]
  12. Pear J. R., Kawagoe Y., Schreckengost W. E., Delmer D. P., Stalker D. M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12637–12642. doi: 10.1073/pnas.93.22.12637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reiter W. D., Chapple C. C., Somerville C. R. Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science. 1993 Aug 20;261(5124):1032–1035. doi: 10.1126/science.261.5124.1032. [DOI] [PubMed] [Google Scholar]
  14. Ross P., Mayer R., Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol Rev. 1991 Mar;55(1):35–58. doi: 10.1128/mr.55.1.35-58.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Somerville S., Somerville C. Arabidopsis at 7: still growing like a weed. Plant Cell. 1996 Nov;8(11):1917–1933. doi: 10.1105/tpc.8.11.1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Updegraff D. M. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969 Dec;32(3):420–424. doi: 10.1016/s0003-2697(69)80009-6. [DOI] [PubMed] [Google Scholar]
  17. Whetten R., Sederoff R. Lignin Biosynthesis. Plant Cell. 1995 Jul;7(7):1001–1013. doi: 10.1105/tpc.7.7.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wong H. C., Fear A. L., Calhoon R. D., Eichinger G. H., Mayer R., Amikam D., Benziman M., Gelfand D. H., Meade J. H., Emerick A. W. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8130–8134. doi: 10.1073/pnas.87.20.8130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zablackis E., Huang J., Müller B., Darvill A. G., Albersheim P. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 1995 Apr;107(4):1129–1138. doi: 10.1104/pp.107.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES