Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 May;9(5):773–782. doi: 10.1105/tpc.9.5.773

A nuclear-encoded function essential for translation of the chloroplast psaB mRNA in chlamydomonas.

O Stampacchia 1, J Girard-Bascou 1, J L Zanasco 1, W Zerges 1, P Bennoun 1, J D Rochaix 1
PMCID: PMC156955  PMID: 9165753

Abstract

We report the analysis of a photosystem I-deficient mutant of Chlamydomonas reinhardtii, F15, that contains a mutation at the TAB1 (for translation of psaB mRNA) nuclear locus. Pulse labeling of chloroplast proteins revealed that the synthesis of the two photosystem I reaction center polypeptides PSAA and PSAB was undetectable in this mutant. The mRNA levels of these proteins were only moderately reduced, suggesting that the primary defect occurs at a step during or after translation. We constructed chimeric genes consisting of the psaA and psaB 5' untranslated region (5' UTR) fused to the aminoglycoside adenyltransferase (aadA) coding sequence, which confers spectinomycin resistance. Insertion of these genes into the chloroplast genome through biolistic transformation and analysis of their expression in the TAB1 mutant nuclear background revealed that the psaB (but not the psaA) 5' UTR is the target of the wild-type TAB1 function. This suggests that TAB1 is required for the initiation of psaB mRNA translation. The dependence of PSAA synthesis or accumulation on PSAB synthesis is strongly suggested by the identification of a suppressor mutation within the psaB 5' UTR. The suppressor specifically restores the synthesis of both proteins in the presence of the tab1-F15 mutation. The location of the suppressor mutation within a putative base-paired region near the psaB initiation codon suggests a role for TAB1 in the activation of translation of the psaB mRNA.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Choquet Y., Goldschmidt-Clermont M., Girard-Bascou J., Kück U., Bennoun P., Rochaix J. D. Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell. 1988 Mar 25;52(6):903–913. doi: 10.1016/0092-8674(88)90432-1. [DOI] [PubMed] [Google Scholar]
  2. Crivellone M. D., Wu M. A., Tzagoloff A. Assembly of the mitochondrial membrane system. Analysis of structural mutants of the yeast coenzyme QH2-cytochrome c reductase complex. J Biol Chem. 1988 Oct 5;263(28):14323–14333. [PubMed] [Google Scholar]
  3. Danon A., Mayfield S. P. ADP-dependent phosphorylation regulates RNA-binding in vitro: implications in light-modulated translation. EMBO J. 1994 May 1;13(9):2227–2235. doi: 10.1002/j.1460-2075.1994.tb06500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Danon A., Mayfield S. P. Light regulated translational activators: identification of chloroplast gene specific mRNA binding proteins. EMBO J. 1991 Dec;10(13):3993–4001. doi: 10.1002/j.1460-2075.1991.tb04974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drapier D., Girard-Bascou J., Wollman F. A. Evidence for Nuclear Control of the Expression of the atpA and atpB Chloroplast Genes in Chlamydomonas. Plant Cell. 1992 Mar;4(3):283–295. doi: 10.1105/tpc.4.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer N., Stampacchia O., Redding K., Rochaix J. D. Selectable marker recycling in the chloroplast. Mol Gen Genet. 1996 Jun 12;251(3):373–380. doi: 10.1007/BF02172529. [DOI] [PubMed] [Google Scholar]
  7. Gillham N. W., Boynton J. E., Hauser C. R. Translational regulation of gene expression in chloroplasts and mitochondria. Annu Rev Genet. 1994;28:71–93. doi: 10.1146/annurev.ge.28.120194.000443. [DOI] [PubMed] [Google Scholar]
  8. Girard-Bascou J., Choquet Y., Schneider M., Delosme M., Dron M. Characterization of a chloroplast mutation in the psaA2 gene of Chlamydomonas reinhardtii. Curr Genet. 1987;12(7):489–495. doi: 10.1007/BF00419557. [DOI] [PubMed] [Google Scholar]
  9. Girard-Bascou J., Pierre Y., Drapier D. A nuclear mutation affects the synthesis of the chloroplast psbA gene production Chlamydomonas reinhardtii. Curr Genet. 1992 Jul;22(1):47–52. doi: 10.1007/BF00351741. [DOI] [PubMed] [Google Scholar]
  10. Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
  11. Goldschmidt-Clermont M., Girard-Bascou J., Choquet Y., Rochaix J. D. Trans-splicing mutants of Chlamydomonas reinhardtii. Mol Gen Genet. 1990 Sep;223(3):417–425. doi: 10.1007/BF00264448. [DOI] [PubMed] [Google Scholar]
  12. Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. Nucleic Acids Res. 1991 Aug 11;19(15):4083–4089. doi: 10.1093/nar/19.15.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuchka M. R., Mayfield S. P., Rochaix J. D. Nuclear mutations specifically affect the synthesis and/or degradation of the chloroplast-encoded D2 polypeptide of photosystem II in Chlamydomonas reinhardtii. EMBO J. 1988 Feb;7(2):319–324. doi: 10.1002/j.1460-2075.1988.tb02815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuras R., Büschlen S., Wollman F. A. Maturation of pre-apocytochrome f in vivo. A site-directed mutagenesis study in Chlamydomonas reinhardtii. J Biol Chem. 1995 Nov 17;270(46):27797–27803. doi: 10.1074/jbc.270.46.27797. [DOI] [PubMed] [Google Scholar]
  15. Kuras R., Wollman F. A., Joliot P. Conversion of cytochrome f to a soluble form in vivo in Chlamydomonas reinhardtii. Biochemistry. 1995 Jun 6;34(22):7468–7475. doi: 10.1021/bi00022a021. [DOI] [PubMed] [Google Scholar]
  16. Kuras R., Wollman F. A. The assembly of cytochrome b6/f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. EMBO J. 1994 Mar 1;13(5):1019–1027. doi: 10.1002/j.1460-2075.1994.tb06350.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayfield S. P. Chloroplast gene regulation: interaction of the nuclear and chloroplast genomes in the expression of photosynthetic proteins. Curr Opin Cell Biol. 1990 Jun;2(3):509–513. doi: 10.1016/0955-0674(90)90135-2. [DOI] [PubMed] [Google Scholar]
  18. McCarthy J. E., Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990 Mar;6(3):78–85. doi: 10.1016/0168-9525(90)90098-q. [DOI] [PubMed] [Google Scholar]
  19. Monod C., Goldschmidt-Clermont M., Rochaix J. D. Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii. Mol Gen Genet. 1992 Feb;231(3):449–459. doi: 10.1007/BF00292715. [DOI] [PubMed] [Google Scholar]
  20. Nickelsen J., van Dillewijn J., Rahire M., Rochaix J. D. Determinants for stability of the chloroplast psbD RNA are located within its short leader region in Chlamydomonas reinhardtii. EMBO J. 1994 Jul 1;13(13):3182–3191. doi: 10.1002/j.1460-2075.1994.tb06617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rochaix J. D. Post-transcriptional steps in the expression of chloroplast genes. Annu Rev Cell Biol. 1992;8:1–28. doi: 10.1146/annurev.cb.08.110192.000245. [DOI] [PubMed] [Google Scholar]
  22. Schmitt M. E., Trumpower B. L. The petite phenotype resulting from a truncated copy of subunit 6 results from loss of assembly of the cytochrome bc1 complex and can be suppressed by overexpression of subunit 9. J Biol Chem. 1991 Aug 15;266(23):14958–14963. [PubMed] [Google Scholar]
  23. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  24. Staub J. M., Maliga P. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J. 1993 Feb;12(2):601–606. doi: 10.1002/j.1460-2075.1993.tb05692.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Takahashi Y., Goldschmidt-Clermont M., Soen S. Y., Franzén L. G., Rochaix J. D. Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J. 1991 Aug;10(8):2033–2040. doi: 10.1002/j.1460-2075.1991.tb07733.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wu H. Y., Kuchka M. R. A nuclear suppressor overcomes defects in the synthesis of the chloroplast psbD gene product caused by mutations in two distinct nuclear genes of Chlamydomonas. Curr Genet. 1995 Feb;27(3):263–269. doi: 10.1007/BF00326159. [DOI] [PubMed] [Google Scholar]
  27. Wulczyn F. G., Bölker M., Kahmann R. Translation of the bacteriophage Mu mom gene is positively regulated by the phage com gene product. Cell. 1989 Jun 30;57(7):1201–1210. doi: 10.1016/0092-8674(89)90057-3. [DOI] [PubMed] [Google Scholar]
  28. Zerges W., Rochaix J. D. The 5' leader of a chloroplast mRNA mediates the translational requirements for two nucleus-encoded functions in Chlamydomonas reinhardtii. Mol Cell Biol. 1994 Aug;14(8):5268–5277. doi: 10.1128/mcb.14.8.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Vitry C., Olive J., Drapier D., Recouvreur M., Wollman F. A. Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol. 1989 Sep;109(3):991–1006. doi: 10.1083/jcb.109.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES