Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 May;9(5):783–798. doi: 10.1105/tpc.9.5.783

Nitrate Acts as a Signal to Induce Organic Acid Metabolism and Repress Starch Metabolism in Tobacco.

W R Scheible 1, A Gonzalez-Fontes 1, M Lauerer 1, B Muller-Rober 1, M Caboche 1, M Stitt 1
PMCID: PMC156956  PMID: 12237366

Abstract

Nia30(145) transformants with very low nitrate reductase activity provide an in vivo screen to identify processes that are regulated by nitrate. Nia30(145) resembles nitrate-limited wild-type plants with respect to growth rate and protein and amino acid content but accumulates large amounts of nitrate when it is grown on high nitrate. The transcripts for nitrate reductase (NR), nitrite reductase, cytosolic glutamine synthetase, and glutamate synthase increased; NR and nitrite reductase activity increased in leaves and roots; and glutamine synthetase activity increased in roots. The transcripts for phosphoenolpyruvate carboxylase, cytosolic pyruvate kinase, citrate synthase, and NADP-isocitrate dehydrogenase increased; phosphoenolpyruvate carboxylase activity increased; and malate, citrate, isocitrate, and [alpha]-oxoglutarate accumulated in leaves and roots. There was a decrease of the ADP-glucose pyrophosphorylase transcript and activity, and starch decreased in the leaves and roots. After adding 12 mM nitrate to nitrate-limited Nia30(145), the transcripts for NR and phosphoenolpyruvate carboxylase increased, and the transcripts for ADP-glucose pyrophosphorylase decreased within 2 and 4 hr, respectively. Starch was remobilized at almost the same rate as in wild-type plants, even though growth was not stimulated in Nia30(145). It is proposed that nitrate acts as a signal to initiate coordinated changes in carbon and nitrogen metabolism.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Champigny M. L., Foyer C. Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino Acid biosynthesis: basis for a new concept. Plant Physiol. 1992 Sep;100(1):7–12. doi: 10.1104/pp.100.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheng C. L., Acedo G. N., Dewdney J., Goodman H. M., Conkling M. A. Differential expression of the two Arabidopsis nitrate reductase genes. Plant Physiol. 1991 May;96(1):275–279. doi: 10.1104/pp.96.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chollet Raymond, Vidal Jean, O'Leary Marion H. PHOSPHOENOLPYRUVATE CARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):273–298. doi: 10.1146/annurev.arplant.47.1.273. [DOI] [PubMed] [Google Scholar]
  4. Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dubois F., Brugière N., Sangwan R. S., Hirel B. Localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ- and cell-specific patterns of protein synthesis and gene expression. Plant Mol Biol. 1996 Jul;31(4):803–817. doi: 10.1007/BF00019468. [DOI] [PubMed] [Google Scholar]
  6. Duff SMG., Chollet R. In Vivo Regulation of Wheat-Leaf Phosphoenolpyruvate Carboxylase by Reversible Phosphorylation. Plant Physiol. 1995 Mar;107(3):775–782. doi: 10.1104/pp.107.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foyer C. H., Ferrario S. Modulation of carbon and nitrogen metabolism in transgenic plants with a view to improved biomass production. Biochem Soc Trans. 1994 Nov;22(4):909–915. doi: 10.1042/bst0220909. [DOI] [PubMed] [Google Scholar]
  8. Galangau F., Daniel-Vedele F., Moureaux T., Dorbe M. F., Leydecker M. T., Caboche M. Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol. 1988 Oct;88(2):383–388. doi: 10.1104/pp.88.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gowri G., Kenis J. D., Ingemarsson B., Redinbaugh M. G., Campbell W. H. Nitrate reductase transcript is expressed in the primary response of maize to environmental nitrate. Plant Mol Biol. 1992 Jan;18(1):55–64. doi: 10.1007/BF00018456. [DOI] [PubMed] [Google Scholar]
  10. Granato T. C., Raper C. D., Jr Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot. 1989 Feb;40(211):263–275. doi: 10.1093/jxb/40.2.263. [DOI] [PubMed] [Google Scholar]
  11. Hanning I., Heldt H. W. On the Function of Mitochondrial Metabolism during Photosynthesis in Spinach (Spinacia oleracea L.) Leaves (Partitioning between Respiration and Export of Redox Equivalents and Precursors for Nitrate Assimilation Products). Plant Physiol. 1993 Dec;103(4):1147–1154. doi: 10.1104/pp.103.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huber Steven C., Huber Joan L. ROLE AND REGULATION OF SUCROSE-PHOSPHATE SYNTHASE IN HIGHER PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):431–444. doi: 10.1146/annurev.arplant.47.1.431. [DOI] [PubMed] [Google Scholar]
  13. Imsande J., Touraine B. N Demand and the Regulation of Nitrate Uptake. Plant Physiol. 1994 May;105(1):3–7. doi: 10.1104/pp.105.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson W. A., Flesher D., Hageman R. H. Nitrate Uptake by Dark-grown Corn Seedlings: Some Characteristics of Apparent Induction. Plant Physiol. 1973 Jan;51(1):120–127. doi: 10.1104/pp.51.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaiser W. M., Huber S. C. Posttranslational Regulation of Nitrate Reductase in Higher Plants. Plant Physiol. 1994 Nov;106(3):817–821. doi: 10.1104/pp.106.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koch K. E. CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):509–540. doi: 10.1146/annurev.arplant.47.1.509. [DOI] [PubMed] [Google Scholar]
  17. Kronenberger J., Lepingle A., Caboche M., Vaucheret H. Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet. 1993 Jan;236(2-3):203–208. doi: 10.1007/BF00277113. [DOI] [PubMed] [Google Scholar]
  18. Lam H.-M., Coschigano K. T., Oliveira I. C., Melo-Oliveira R., Coruzzi G. M. THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO AMINO ACIDS IN HIGHER PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):569–593. doi: 10.1146/annurev.arplant.47.1.569. [DOI] [PubMed] [Google Scholar]
  19. Le Van Quy, Champigny M. L. NO(3) Enhances the Kinase Activity for Phosphorylation of Phosphoenolpyruvate Carboxylase and Sucrose Phosphate Synthase Proteins in Wheat Leaves: Evidence from the Effects of Mannose and Okadaic Acid. Plant Physiol. 1992 May;99(1):344–347. doi: 10.1104/pp.99.1.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lin Y., Hwang C. F., Brown J. B., Cheng C. L. 5' proximal regions of Arabidopsis nitrate reductase genes direct nitrate-induced transcription in transgenic tobacco. Plant Physiol. 1994 Oct;106(2):477–484. doi: 10.1104/pp.106.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marzluf G. A. Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol. 1993;47:31–55. doi: 10.1146/annurev.mi.47.100193.000335. [DOI] [PubMed] [Google Scholar]
  22. Moorhead G., Douglas P., Morrice N., Scarabel M., Aitken A., MacKintosh C. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr Biol. 1996 Sep 1;6(9):1104–1113. doi: 10.1016/s0960-9822(02)70677-5. [DOI] [PubMed] [Google Scholar]
  23. Müller-Röber B. T., Kossmann J., Hannah L. C., Willmitzer L., Sonnewald U. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet. 1990 Oct;224(1):136–146. doi: 10.1007/BF00259460. [DOI] [PubMed] [Google Scholar]
  24. Pouteau S., Cherel I., Vaucheret H., Caboche M. Nitrate Reductase mRNA Regulation in Nicotiana plumbaginifolia Nitrate Reductase-Deficient Mutants. Plant Cell. 1989 Nov;1(11):1111–1120. doi: 10.1105/tpc.1.11.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Preiss J., Ball K., Smith-White B., Iglesias A., Kakefuda G., Li L. Starch biosynthesis and its regulation. Biochem Soc Trans. 1991 Aug;19(3):539–547. doi: 10.1042/bst0190539. [DOI] [PubMed] [Google Scholar]
  26. Radin J. W., Eidenbock M. P. Carbon Accumulation during Photosynthesis in Leaves of Nitrogen- and Phosphorus-Stressed Cotton. Plant Physiol. 1986 Nov;82(3):869–871. doi: 10.1104/pp.82.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Redinbaugh M. G., Campbell W. H. Glutamine Synthetase and Ferredoxin-Dependent Glutamate Synthase Expression in the Maize (Zea mays) Root Primary Response to Nitrate (Evidence for an Organ-Specific Response). Plant Physiol. 1993 Apr;101(4):1249–1255. doi: 10.1104/pp.101.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ritchie S. W., Redinbaugh M. G., Shiraishi N., Vrba J. M., Campbell W. H. Identification of a maize root transcript expressed in the primary response to nitrate: characterization of a cDNA with homology to ferredoxin-NADP+ oxidoreductase. Plant Mol Biol. 1994 Oct;26(2):679–690. doi: 10.1007/BF00013753. [DOI] [PubMed] [Google Scholar]
  29. Rufty T. W., Huber S. C., Volk R. J. Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol. 1988 Nov;88(3):725–730. doi: 10.1104/pp.88.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sakakibara H., Watanabe M., Hase T., Sugiyama T. Molecular cloning and characterization of complementary DNA encoding for ferredoxin-dependent glutamate synthase in maize leaf. J Biol Chem. 1991 Feb 5;266(4):2028–2035. [PubMed] [Google Scholar]
  31. Shaner D. L., Boyer J. S. Nitrate Reductase Activity in Maize (Zea mays L.) Leaves: I. Regulation by Nitrate Flux. Plant Physiol. 1976 Oct;58(4):499–504. doi: 10.1104/pp.58.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Siddiqi M. Y., Glass A. D., Ruth T. J., Rufty T. W. Studies of the Uptake of Nitrate in Barley: I. Kinetics of NO(3) Influx. Plant Physiol. 1990 Aug;93(4):1426–1432. doi: 10.1104/pp.93.4.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sugiharto B., Sugiyama T. Effects of Nitrate and Ammonium on Gene Expression of Phosphoenolpyruvate Carboxylase and Nitrogen Metabolism in Maize Leaf Tissue during Recovery from Nitrogen Stress. Plant Physiol. 1992 Apr;98(4):1403–1408. doi: 10.1104/pp.98.4.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sukanya R., Li M. G., Snustad D. P. Root- and shoot-specific responses of individual glutamine synthetase genes of maize to nitrate and ammonium. Plant Mol Biol. 1994 Dec;26(6):1935–1946. doi: 10.1007/BF00019504. [DOI] [PubMed] [Google Scholar]
  35. Trueman L. J., Richardson A., Forde B. G. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene. 1996 Oct 10;175(1-2):223–231. doi: 10.1016/0378-1119(96)00154-0. [DOI] [PubMed] [Google Scholar]
  36. Walker D. J., Smith S. J., Miller A. J. Simultaneous Measurement of Intracellular pH and K+ or NO3- in Barley Root Cells Using Triple-Barreled, Ion-Selective Microelectrodes. Plant Physiol. 1995 Jun;108(2):743–751. doi: 10.1104/pp.108.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES