Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 May;9(5):825–836. doi: 10.1105/tpc.9.5.825

A Nuclear Mutation That Affects the 3[prime] Processing of Several mRNAs in Chlamydomonas Chloroplasts.

H Levy 1, K L Kindle 1, D B Stern 1
PMCID: PMC156959  PMID: 12237367

Abstract

We previously created and analyzed a Chlamydomonas reinhardtii strain, [delta]26, in which an inverted repeat in the 3[prime] untranslated region of the chloroplast atpB gene was deleted. In this strain, atpB transcripts are unstable and heterogeneous in size, and growth is poor under conditions in which photosynthesis is required. Spontaneous suppressor mutations that allow rapid photosynthetic growth have been identified. One strain, [delta]26S, retains the atpB deletion yet accumulates a discrete and stable atpB transcript as a consequence of a recessive nuclear mutation. Unlike previously isolated Chlamydomonas nuclear mutations that affect chloroplast mRNA accumulation, the mutation in [delta]26S affects several chloroplast transcripts. For example, in the atpA gene cluster, the relative abundance of several messages was altered in a manner consistent with inefficient mRNA 3[prime] end processing. Furthermore, [delta]26S cells accumulated novel transcripts with 3[prime] termini in the petD-trnR intergenic region. These transcripts are potential intermediates in 3[prime] end processing. In contrast, no alterations were detected for petD, atpA, or atpB mRNA 5[prime] ends; neither were there gross alterations detected for several other mRNAs, including the wild-type atpB transcript. We suggest that the gene identified by the suppressor mutation encodes a product involved in the processing of monocistronic and polycistronic messages.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blowers A. D., Klein U., Ellmore G. S., Bogorad L. Functional in vivo analyses of the 3' flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol Gen Genet. 1993 Apr;238(3):339–349. doi: 10.1007/BF00291992. [DOI] [PubMed] [Google Scholar]
  2. Carpousis A. J., Van Houwe G., Ehretsmann C., Krisch H. M. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell. 1994 Mar 11;76(5):889–900. doi: 10.1016/0092-8674(94)90363-8. [DOI] [PubMed] [Google Scholar]
  3. Chen H. C., Stern D. B. Specific binding of chloroplast proteins in vitro to the 3' untranslated region of spinach chloroplast petD mRNA. Mol Cell Biol. 1991 Sep;11(9):4380–4388. doi: 10.1128/mcb.11.9.4380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christopher D. A., Hallick R. B. Complex RNA maturation pathway for a chloroplast ribosomal protein operon with an internal tRNA cistron. Plant Cell. 1990 Jul;2(7):659–671. doi: 10.1105/tpc.2.7.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delp G., Igloi G. L., Kössel H. Identification of in vivo processing intermediates and of splice junctions of tRNAs from maize chloroplasts by amplification with the polymerase chain reaction. Nucleic Acids Res. 1991 Feb 25;19(4):713–716. doi: 10.1093/nar/19.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deutscher M. P. Ribonuclease multiplicity, diversity, and complexity. J Biol Chem. 1993 Jun 25;268(18):13011–13014. [PubMed] [Google Scholar]
  8. Drapier D., Girard-Bascou J., Wollman F. A. Evidence for Nuclear Control of the Expression of the atpA and atpB Chloroplast Genes in Chlamydomonas. Plant Cell. 1992 Mar;4(3):283–295. doi: 10.1105/tpc.4.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dron M., Rahire M., Rochaix J. D. Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii. Nucleic Acids Res. 1982 Dec 11;10(23):7609–7620. doi: 10.1093/nar/10.23.7609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Hayes R., Kudla J., Schuster G., Gabay L., Maliga P., Gruissem W. Chloroplast mRNA 3'-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J. 1996 Mar 1;15(5):1132–1141. [PMC free article] [PubMed] [Google Scholar]
  12. Kindle K. L., Suzuki H., Stern D. B. Gene Amplification Can Correct a Photosynthetic Growth Defect Caused by mRNA Instability in Chlamydomonas Chloroplasts. Plant Cell. 1994 Feb;6(2):187–200. doi: 10.1105/tpc.6.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Künstner P., Guardiola A., Takahashi Y., Rochaix J. D. A mutant strain of Chlamydomonas reinhardtii lacking the chloroplast photosystem II psbI gene grows photoautotrophically. J Biol Chem. 1995 Apr 21;270(16):9651–9654. doi: 10.1074/jbc.270.16.9651. [DOI] [PubMed] [Google Scholar]
  14. Lee JW, Tevault CV, Owens TG, Greenbaum E. Oxygenic Photoautotrophic Growth Without Photosystem I. Science. 1996 Jul 19;273(5273):364–367. doi: 10.1126/science.273.5273.364. [DOI] [PubMed] [Google Scholar]
  15. Lisitsky I., Liveanu V., Schuster G. RNA-Binding Characteristics of a Ribonucleoprotein from Spinach Chloroplast. Plant Physiol. 1995 Mar;107(3):933–941. doi: 10.1104/pp.107.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nickelsen J., Link G. The 54 kDa RNA-binding protein from mustard chloroplasts mediates endonucleolytic transcript 3' end formation in vitro. Plant J. 1993 Apr;3(4):537–544. doi: 10.1046/j.1365-313x.1993.03040537.x. [DOI] [PubMed] [Google Scholar]
  17. Nickelsen J., van Dillewijn J., Rahire M., Rochaix J. D. Determinants for stability of the chloroplast psbD RNA are located within its short leader region in Chlamydomonas reinhardtii. EMBO J. 1994 Jul 1;13(13):3182–3191. doi: 10.1002/j.1460-2075.1994.tb06617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rott R., Drager R. G., Stern D. B., Schuster G. The 3' untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol Gen Genet. 1996 Oct 28;252(6):676–683. doi: 10.1007/BF02173973. [DOI] [PubMed] [Google Scholar]
  19. Sakamoto W., Sturm N. R., Kindle K. L., Stern D. B. petD mRNA maturation in Chlamydomonas reinhardtii chloroplasts: role of 5' endonucleolytic processing. Mol Cell Biol. 1994 Sep;14(9):6180–6186. doi: 10.1128/mcb.14.9.6180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shepherd H. S., Boynton J. E., Gillham N. W. Mutations in nine chloroplast loci of Chlamydomonas affecting different photosynthetic functions. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1353–1357. doi: 10.1073/pnas.76.3.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stern D. B., Kindle K. L. 3'end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process. Mol Cell Biol. 1993 Apr;13(4):2277–2285. doi: 10.1128/mcb.13.4.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stern D. B., Radwanski E. R., Kindle K. L. A 3' stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell. 1991 Mar;3(3):285–297. doi: 10.1105/tpc.3.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stevenson J. K., Hallick R. B. The psaA operon pre-mRNA of the Euglena gracilis chloroplast is processed into photosystem I and II mRNAs that accumulate differentially depending on the conditions of cell growth. Plant J. 1994 Feb;5(2):247–260. doi: 10.1046/j.1365-313x.1994.05020247.x. [DOI] [PubMed] [Google Scholar]
  24. Wennborg A., Sohlberg B., Angerer D., Klein G., von Gabain A. A human RNase E-like activity that cleaves RNA sequences involved in mRNA stability control. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7322–7326. doi: 10.1073/pnas.92.16.7322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Willey D. L., Gray J. C. An open reading frame encoding a putative haem-binding polypeptide is cotranscribed with the pea chloroplast gene for apocytochrome f. Plant Mol Biol. 1990 Aug;15(2):347–356. doi: 10.1007/BF00036920. [DOI] [PubMed] [Google Scholar]
  26. Woessner J. P., Gillham N. W., Boynton J. E. The sequence of the chloroplast atpB gene and its flanking regions in Chlamydomonas reinhardtii. Gene. 1986;44(1):17–28. doi: 10.1016/0378-1119(86)90038-7. [DOI] [PubMed] [Google Scholar]
  27. Yang J., Schuster G., Stern D. B. CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease. Plant Cell. 1996 Aug;8(8):1409–1420. doi: 10.1105/tpc.8.8.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yu W., Spreitzer R. J. Sequences of trnR-ACG and petD that contain a tRNA-like element within the chloroplast genome of Chlamydomonas reinhardtii. Nucleic Acids Res. 1991 Feb 25;19(4):957–957. doi: 10.1093/nar/19.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES