Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Jun;9(6):895–908. doi: 10.1105/tpc.9.6.895

A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds.

H Weber 1, L Borisjuk 1, U Heim 1, N Sauer 1, U Wobus 1
PMCID: PMC156966  PMID: 9212465

Abstract

To analyze sugar transport processes during seed development of fava bean, we cloned cDNAs encoding one sucrose and one hexose transporter, designated VfSUT1 and VfSTP1, respectively. sugar uptake activity was confirmed after heterologous expression in yeast. Gene expression was studied in relation to seed development. Transcripts were detected in both vegetative and seed tissues. In the embryo, VfSUT1 and VfSTP1 mRNAs were detected only in epidermal cells, but in a different temporal and spatial pattern. VfSTP1 mRNA accumulates during the midcotyledon stage in epidermal cells covering the mitotically active parenchyma, whereas the VfSUT1 transcript was specific to outer epidermal cells showing transfer cell morphology and covering the storage parenchyma. Transfer cells developed at the contact area of the cotyledonary epidermis and the seed coat, starting first at the early cotyledon stage and subsequently spreading to the abaxial region at the late cotyledon stage. Feeding high concentrations of sugars suppressed both VfSUT1 expression and transfer cell differentiation in vitro, suggesting a control by carbohydrate availability.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Emr S. D., Schekman R., Flessel M. C., Thorner J. An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7080–7084. doi: 10.1073/pnas.80.23.7080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  3. Gahrtz M., Schmelzer E., Stolz J., Sauer N. Expression of the PmSUC1 sucrose carrier gene from Plantago major L. is induced during seed development. Plant J. 1996 Jan;9(1):93–100. doi: 10.1046/j.1365-313x.1996.09010093.x. [DOI] [PubMed] [Google Scholar]
  4. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heim U., Weber H., Bäumlein H., Wobus U. A sucrose-synthase gene of Vicia faba L.: expression pattern in developing seeds in relation to starch synthesis and metabolic regulation. Planta. 1993;191(3):394–401. doi: 10.1007/BF00195698. [DOI] [PubMed] [Google Scholar]
  6. Koch K. E. CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):509–540. doi: 10.1146/annurev.arplant.47.1.509. [DOI] [PubMed] [Google Scholar]
  7. Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
  8. Milbradt B., Höfer M. Glucose-transport-deficient mutants of Schizosaccharomyces pombe: phenotype, genetics and use for genetic complementation. Microbiology. 1994 Oct;140(Pt 10):2617–2623. doi: 10.1099/00221287-140-10-2617. [DOI] [PubMed] [Google Scholar]
  9. Ozcan S., Dover J., Rosenwald A. G., Wölfl S., Johnston M. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428–12432. doi: 10.1073/pnas.93.22.12428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ozcan S., Johnston M. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol. 1995 Mar;15(3):1564–1572. doi: 10.1128/mcb.15.3.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Riesmeier J. W., Willmitzer L., Frommer W. B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992 Dec;11(13):4705–4713. doi: 10.1002/j.1460-2075.1992.tb05575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Roitsch T., Tanner W. Expression of a sugar-transporter gene family in a photoautotrophic suspension culture of Chenopodium rubrum L. Planta. 1994;193(3):365–371. doi: 10.1007/BF00201814. [DOI] [PubMed] [Google Scholar]
  13. Sauer N., Baier K., Gahrtz M., Stadler R., Stolz J., Truernit E. Sugar transport across the plasma membranes of higher plants. Plant Mol Biol. 1994 Dec;26(5):1671–1679. doi: 10.1007/BF00016496. [DOI] [PubMed] [Google Scholar]
  14. Sauer N., Caspari T., Klebl F., Tanner W. Functional expression of the Chlorella hexose transporter in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7949–7952. doi: 10.1073/pnas.87.20.7949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sauer N., Friedländer K., Gräml-Wicke U. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J. 1990 Oct;9(10):3045–3050. doi: 10.1002/j.1460-2075.1990.tb07500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sauer N., Stolz J. SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine-tagged protein. Plant J. 1994 Jul;6(1):67–77. doi: 10.1046/j.1365-313x.1994.6010067.x. [DOI] [PubMed] [Google Scholar]
  17. Stadler R., Brandner J., Schulz A., Gahrtz M., Sauer N. Phloem Loading by the PmSUC2 Sucrose Carrier from Plantago major Occurs into Companion Cells. Plant Cell. 1995 Oct;7(10):1545–1554. doi: 10.1105/tpc.7.10.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sturm A., Chrispeels M. J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 1990 Nov;2(11):1107–1119. doi: 10.1105/tpc.2.11.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Truernit E., Schmid J., Epple P., Illig J., Sauer N. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell. 1996 Dec;8(12):2169–2182. doi: 10.1105/tpc.8.12.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weber H., Borisjuk L., Heim U., Buchner P., Wobus U. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. Plant Cell. 1995 Nov;7(11):1835–1846. doi: 10.1105/tpc.7.11.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weber H., Buchner P., Borisjuk L., Wobus U. Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose-phosphate synthase and sucrose synthase: expression patterns, metabolic regulation and implications for seed development. Plant J. 1996 Jun;9(6):841–850. doi: 10.1046/j.1365-313x.1996.9060841.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES