Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Jul;9(7):989–1000. doi: 10.1105/tpc.9.7.989

Embryogenesis: A New Start in Life.

T Laux 1, G Jurgens 1
PMCID: PMC156973  PMID: 12237371

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger F., Taylor A., Brownlee C. Cell fate determination by the cell wall in early fucus development. Science. 1994 Mar 11;263(5152):1421–1423. doi: 10.1126/science.263.5152.1421. [DOI] [PubMed] [Google Scholar]
  2. Busch M., Mayer U., Jürgens G. Molecular analysis of the Arabidopsis pattern formation of gene GNOM: gene structure and intragenic complementation. Mol Gen Genet. 1996 Apr 10;250(6):681–691. doi: 10.1007/BF02172979. [DOI] [PubMed] [Google Scholar]
  3. Cheng J. C., Seeley K. A., Sung Z. R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 1995 Feb;107(2):365–376. doi: 10.1104/pp.107.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark S. E. Organ Formation at the Vegetative Shoot Meristem. Plant Cell. 1997 Jul;9(7):1067–1076. doi: 10.1105/tpc.9.7.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Creelman R. A., Mullet J. E. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell. 1997 Jul;9(7):1211–1223. doi: 10.1105/tpc.9.7.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Jong A. J., Cordewener J., Lo Schiavo F., Terzi M., Vandekerckhove J., Van Kammen A., De Vries S. C. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell. 1992 Apr;4(4):425–433. doi: 10.1105/tpc.4.4.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Jong A. J., Heidstra R., Spaink H. P., Hartog M. V., Meijer E. A., Hendriks T., Schiavo F. L., Terzi M., Bisseling T., Van Kammen A. Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Plant Cell. 1993 Jun;5(6):615–620. doi: 10.1105/tpc.5.6.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Di Laurenzio L., Wysocka-Diller J., Malamy J. E., Pysh L., Helariutta Y., Freshour G., Hahn M. G., Feldmann K. A., Benfey P. N. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell. 1996 Aug 9;86(3):423–433. doi: 10.1016/s0092-8674(00)80115-4. [DOI] [PubMed] [Google Scholar]
  9. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  10. Elliott R. C., Betzner A. S., Huttner E., Oakes M. P., Tucker W. Q., Gerentes D., Perez P., Smyth D. R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996 Feb;8(2):155–168. doi: 10.1105/tpc.8.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Endrizzi K., Moussian B., Haecker A., Levin J. Z., Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 1996 Dec;10(6):967–979. doi: 10.1046/j.1365-313x.1996.10060967.x. [DOI] [PubMed] [Google Scholar]
  12. Goldberg R. B., de Paiva G., Yadegari R. Plant embryogenesis: zygote to seed. Science. 1994 Oct 28;266(5185):605–614. doi: 10.1126/science.266.5185.605. [DOI] [PubMed] [Google Scholar]
  13. Green J. B., Smith J. C. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature. 1990 Sep 27;347(6291):391–394. doi: 10.1038/347391a0. [DOI] [PubMed] [Google Scholar]
  14. Irish V. F. Cell lineage in plant development. Curr Opin Genet Dev. 1991 Aug;1(2):169–173. doi: 10.1016/s0959-437x(05)80065-6. [DOI] [PubMed] [Google Scholar]
  15. Jürgens G. Axis formation in plant embryogenesis: cues and clues. Cell. 1995 May 19;81(4):467–470. doi: 10.1016/0092-8674(95)90065-9. [DOI] [PubMed] [Google Scholar]
  16. Kende H., Zeevaart JAD. The Five "Classical" Plant Hormones. Plant Cell. 1997 Jul;9(7):1197–1210. doi: 10.1105/tpc.9.7.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kerstetter R. A., Hake S. Shoot Meristem Formation in Vegetative Development. Plant Cell. 1997 Jul;9(7):1001–1010. doi: 10.1105/tpc.9.7.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kirk M. M., Ransick A., McRae S. E., Kirk D. L. The relationship between cell size and cell fate in Volvox carteri. J Cell Biol. 1993 Oct;123(1):191–208. doi: 10.1083/jcb.123.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klucher K. M., Chow H., Reiser L., Fischer R. L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996 Feb;8(2):137–153. doi: 10.1105/tpc.8.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kreuger M., van Holst G. J. Arabinogalactan proteins and plant differentiation. Plant Mol Biol. 1996 Mar;30(6):1077–1086. doi: 10.1007/BF00019543. [DOI] [PubMed] [Google Scholar]
  21. Laux T., Mayer K. F., Berger J., Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996 Jan;122(1):87–96. doi: 10.1242/dev.122.1.87. [DOI] [PubMed] [Google Scholar]
  22. Lawrence P. A., Struhl G. Morphogens, compartments, and pattern: lessons from drosophila? Cell. 1996 Jun 28;85(7):951–961. doi: 10.1016/s0092-8674(00)81297-0. [DOI] [PubMed] [Google Scholar]
  23. Liu Cm., Xu Zh., Chua N. H. Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. Plant Cell. 1993 Jun;5(6):621–630. doi: 10.1105/tpc.5.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Long J. A., Moan E. I., Medford J. I., Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996 Jan 4;379(6560):66–69. doi: 10.1038/379066a0. [DOI] [PubMed] [Google Scholar]
  25. Lopes M. A., Larkins B. A. Endosperm origin, development, and function. Plant Cell. 1993 Oct;5(10):1383–1399. doi: 10.1105/tpc.5.10.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lu P., Porat R., Nadeau J. A., O'Neill S. D. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell. 1996 Dec;8(12):2155–2168. doi: 10.1105/tpc.8.12.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lucas W. J., Bouché-Pillon S., Jackson D. P., Nguyen L., Baker L., Ding B., Hake S. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science. 1995 Dec 22;270(5244):1980–1983. doi: 10.1126/science.270.5244.1980. [DOI] [PubMed] [Google Scholar]
  28. Lukowitz W., Mayer U., Jürgens G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell. 1996 Jan 12;84(1):61–71. doi: 10.1016/s0092-8674(00)80993-9. [DOI] [PubMed] [Google Scholar]
  29. Malamy J. E., Benfey P. N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 1997 Jan;124(1):33–44. doi: 10.1242/dev.124.1.33. [DOI] [PubMed] [Google Scholar]
  30. Nelson T., Dengler N. Leaf Vascular Pattern Formation. Plant Cell. 1997 Jul;9(7):1121–1135. doi: 10.1105/tpc.9.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nomura K., Komamine A. Identification and Isolation of Single Cells that Produce Somatic Embryos at a High Frequency in a Carrot Suspension Culture. Plant Physiol. 1985 Dec;79(4):988–991. doi: 10.1104/pp.79.4.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ohad N., Margossian L., Hsu Y. C., Williams C., Repetti P., Fischer R. L. A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5319–5324. doi: 10.1073/pnas.93.11.5319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 Jul;3(7):677–684. doi: 10.1105/tpc.3.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pennell R. I., Cronk Q. C., Forsberg L. S., Stöhr C., Snogerup L., Kjellbom P., McCabe P. F. Cell-context signalling. Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):87–93. doi: 10.1098/rstb.1995.0142. [DOI] [PubMed] [Google Scholar]
  35. Przemeck G. K., Mattsson J., Hardtke C. S., Sung Z. R., Berleth T. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta. 1996;200(2):229–237. doi: 10.1007/BF00208313. [DOI] [PubMed] [Google Scholar]
  36. Ray S., Golden T., Ray A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev Biol. 1996 Nov 25;180(1):365–369. doi: 10.1006/dbio.1996.0309. [DOI] [PubMed] [Google Scholar]
  37. Rosa F., Sargent T. D., Rebbert M. L., Michaels G. S., Jamrich M., Grunz H., Jonas E., Winkles J. A., Dawid I. B. Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis. Dev Biol. 1988 Sep;129(1):114–123. doi: 10.1016/0012-1606(88)90166-2. [DOI] [PubMed] [Google Scholar]
  38. Russell S. D. The Egg Cell: Development and Role in Fertilization and Early Embryogenesis. Plant Cell. 1993 Oct;5(10):1349–1359. doi: 10.1105/tpc.5.10.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Scheres B., McKhann H. I., Van Den Berg C. Roots Redefined: Anatomical and Genetic Analysis of Root Development. Plant Physiol. 1996 Aug;111(4):959–964. doi: 10.1104/pp.111.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schiavone F. M., Cooke T. J. Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differ. 1987 Jun;21(1):53–62. doi: 10.1016/0045-6039(87)90448-9. [DOI] [PubMed] [Google Scholar]
  41. Schiavone F. M., Racusen R. H. Microsurgery reveals regional capabilities for pattern reestablishment in somatic carrot embryos. Dev Biol. 1990 Sep;141(1):211–219. doi: 10.1016/0012-1606(90)90116-z. [DOI] [PubMed] [Google Scholar]
  42. Schiefelbein J. W., Masucci J. D., Wang H. Building a root: the control of patterning and morphogenesis during root development. Plant Cell. 1997 Jul;9(7):1089–1098. doi: 10.1105/tpc.9.7.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schmidt E. D., Guzzo F., Toonen M. A., de Vries S. C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development. 1997 May;124(10):2049–2062. doi: 10.1242/dev.124.10.2049. [DOI] [PubMed] [Google Scholar]
  44. Semino C. E., Robbins P. W. Synthesis of "Nod"-like chitin oligosaccharides by the Xenopus developmental protein DG42. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3498–3501. doi: 10.1073/pnas.92.8.3498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shevell D. E., Leu W. M., Gillmor C. S., Xia G., Feldmann K. A., Chua N. H. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell. 1994 Jul 1;77(7):1051–1062. doi: 10.1016/0092-8674(94)90444-8. [DOI] [PubMed] [Google Scholar]
  46. Sinha N. R., Williams R. E., Hake S. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev. 1993 May;7(5):787–795. doi: 10.1101/gad.7.5.787. [DOI] [PubMed] [Google Scholar]
  47. St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992 Jan 24;68(2):201–219. doi: 10.1016/0092-8674(92)90466-p. [DOI] [PubMed] [Google Scholar]
  48. Thomas T. L. Gene expression during plant embryogenesis and germination: an overview. Plant Cell. 1993 Oct;5(10):1401–1410. doi: 10.1105/tpc.5.10.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Torres-Ruiz R. A., Jürgens G. Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development. 1994 Oct;120(10):2967–2978. doi: 10.1242/dev.120.10.2967. [DOI] [PubMed] [Google Scholar]
  50. Torres-Ruiz R. A., Lohner A., Jürgens G. The GURKE gene is required for normal organization of the apical region in the Arabidopsis embryo. Plant J. 1996 Dec;10(6):1005–1016. doi: 10.1046/j.1365-313x.1996.10061005.x. [DOI] [PubMed] [Google Scholar]
  51. Vernon D. M., Meinke D. W. Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Dev Biol. 1994 Oct;165(2):566–573. doi: 10.1006/dbio.1994.1276. [DOI] [PubMed] [Google Scholar]
  52. Vroemen C. W., Langeveld S., Mayer U., Ripper G., Jurgens G., Van Kammen A., De Vries S. C. Pattern Formation in the Arabidopsis Embryo Revealed by Position-Specific Lipid Transfer Protein Gene Expression. Plant Cell. 1996 May;8(5):783–791. doi: 10.1105/tpc.8.5.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yeung E. C., Meinke D. W. Embryogenesis in Angiosperms: Development of the Suspensor. Plant Cell. 1993 Oct;5(10):1371–1381. doi: 10.1105/tpc.5.10.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zimmerman J. L. Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell. 1993 Oct;5(10):1411–1423. doi: 10.1105/tpc.5.10.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. van den Berg C., Willemsen V., Hage W., Weisbeek P., Scheres B. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature. 1995 Nov 2;378(6552):62–65. doi: 10.1038/378062a0. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES