Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Jul;9(7):1031–1041. doi: 10.1105/tpc.9.7.1031

Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement.

D J Cosgrove 1
PMCID: PMC156977  PMID: 9254929

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amor Y., Haigler C. H., Johnson S., Wainscott M., Delmer D. P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9353–9357. doi: 10.1073/pnas.92.20.9353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brummell D. A., Bird C. R., Schuch W., Bennett A. B. An endo-1,4-beta-glucanase expressed at high levels in rapidly expanding tissues. Plant Mol Biol. 1997 Jan;33(1):87–95. doi: 10.1023/a:1005733213856. [DOI] [PubMed] [Google Scholar]
  3. Carpita N. C. Cell wall development in maize coleoptiles. Plant Physiol. 1984 Sep;76(1):205–212. doi: 10.1104/pp.76.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  5. Chazen O., Neumann P. M. Hydraulic Signals from the Roots and Rapid Cell-Wall Hardening in Growing Maize (Zea mays L.) Leaves Are Primary Responses to Polyethylene Glycol-Induced Water Deficits. Plant Physiol. 1994 Apr;104(4):1385–1392. doi: 10.1104/pp.104.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cosgrove D. J. Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol. 1997;13:171–201. doi: 10.1146/annurev.cellbio.13.1.171. [DOI] [PubMed] [Google Scholar]
  7. Cosgrove D. J., Bedinger P., Durachko D. M. Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6559–6564. doi: 10.1073/pnas.94.12.6559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cosgrove D. J., Li Z. C. Role of Expansin in Cell Enlargement of Oat Coleoptiles (Analysis of Developmental Gradients and Photocontrol). Plant Physiol. 1993 Dec;103(4):1321–1328. doi: 10.1104/pp.103.4.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cosgrove D. J. Plant cell enlargement and the action of expansins. Bioessays. 1996 Jul;18(7):533–540. doi: 10.1002/bies.950180704. [DOI] [PubMed] [Google Scholar]
  10. Cosgrove D. J. Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol. 1993 May;124(1):1–23. doi: 10.1111/j.1469-8137.1993.tb03795.x. [DOI] [PubMed] [Google Scholar]
  11. Cosgrove D. J. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta. 1987;171:266–278. [PubMed] [Google Scholar]
  12. Cramer G. R. Kinetics of Maize Leaf Elongation : III. Silver Thiosulfate Increases the Yield Threshold of Salt-Stressed Plants, but Ethylene Is Not Involved. Plant Physiol. 1992 Oct;100(2):1044–1047. doi: 10.1104/pp.100.2.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cutillas-Iturralde A., Lorences E. P. Effect of Xyloglucan Oligosaccharides on Growth, Viscoelastic Properties, and Long-Term Extension of Pea Shoots. Plant Physiol. 1997 Jan;113(1):103–109. doi: 10.1104/pp.113.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frensch J., Hsiao T. C. Rapid Response of the Yield Threshold and Turgor Regulation during Adjustment of Root Growth to Water Stress in Zea mays. Plant Physiol. 1995 May;108(1):303–312. doi: 10.1104/pp.108.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frías I., Caldeira M. T., Pérez-Castiñeira J. R., Navarro-Aviñ J. P., Culiañez-Maciá F. A., Kuppinger O., Stransky H., Pagés M., Hager A., Serrano R. A major isoform of the maize plasma membrane H(+)-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell. 1996 Sep;8(9):1533–1544. doi: 10.1105/tpc.8.9.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haigler C. H., White A. R., Brown R. M., Jr, Cooper K. M. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol. 1982 Jul;94(1):64–69. doi: 10.1083/jcb.94.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hayashi T., Maclachlan G. Pea xyloglucan and cellulose : I. Macromolecular organization. Plant Physiol. 1984 Jul;75(3):596–604. doi: 10.1104/pp.75.3.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayashi T., Marsden M. P., Delmer D. P. Pea Xyloglucan and Cellulose: VI. Xyloglucan-Cellulose Interactions in Vitro and in Vivo. Plant Physiol. 1987 Feb;83(2):384–389. doi: 10.1104/pp.83.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hayashi T., Wong Y. S., Maclachlan G. Pea Xyloglucan and Cellulose : II. Hydrolysis by Pea Endo-1,4-beta-Glucanases. Plant Physiol. 1984 Jul;75(3):605–610. doi: 10.1104/pp.75.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Keller E., Cosgrove D. J. Expansins in growing tomato leaves. Plant J. 1995 Dec;8(6):795–802. doi: 10.1046/j.1365-313x.1995.8060795.x. [DOI] [PubMed] [Google Scholar]
  21. Kim J. B., Carpita N. C. Changes in Esterification of the Uronic Acid Groups of Cell Wall Polysaccharides during Elongation of Maize Coleoptiles. Plant Physiol. 1992 Feb;98(2):646–653. doi: 10.1104/pp.98.2.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kobayashi M., Matoh T., Azuma Ji. Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiol. 1996 Mar;110(3):1017–1020. doi: 10.1104/pp.110.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kropf D. L. Induction of Polarity in Fucoid Zygotes. Plant Cell. 1997 Jul;9(7):1011–1020. doi: 10.1105/tpc.9.7.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McNeil M., Darvill A. G., Fry S. C., Albersheim P. Structure and function of the primary cell walls of plants. Annu Rev Biochem. 1984;53:625–663. doi: 10.1146/annurev.bi.53.070184.003205. [DOI] [PubMed] [Google Scholar]
  25. McQueen-Mason S. J., Cosgrove D. J. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 1995 Jan;107(1):87–100. doi: 10.1104/pp.107.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McQueen-Mason S. J., Fry S. C., Durachko D. M., Cosgrove D. J. The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta. 1993;190(3):327–331. doi: 10.1007/BF00196961. [DOI] [PubMed] [Google Scholar]
  27. McQueen-Mason S., Cosgrove D. J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6574–6578. doi: 10.1073/pnas.91.14.6574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McQueen-Mason S., Durachko D. M., Cosgrove D. J. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992 Nov;4:1425–1433. doi: 10.1105/tpc.4.11.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Michael A. J. A cDNA from pea petals with sequence similarity to pollen allergen, cytokinin-induced and genetic tumour-specific genes: identification of a new family of related sequences. Plant Mol Biol. 1996 Jan;30(1):219–224. doi: 10.1007/BF00017818. [DOI] [PubMed] [Google Scholar]
  30. Moustacas A. M., Nari J., Borel M., Noat G., Ricard J. Pectin methylesterase, metal ions and plant cell-wall extension. The role of metal ions in plant cell-wall extension. Biochem J. 1991 Oct 15;279(Pt 2):351–354. doi: 10.1042/bj2790351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nishitani K., Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem. 1992 Oct 15;267(29):21058–21064. [PubMed] [Google Scholar]
  32. O'Neill M. A., Warrenfeltz D., Kates K., Pellerin P., Doco T., Darvill A. G., Albersheim P. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. In vitro conditions for the formation and hydrolysis of the dimer. J Biol Chem. 1996 Sep 13;271(37):22923–22930. doi: 10.1074/jbc.271.37.22923. [DOI] [PubMed] [Google Scholar]
  33. Pear J. R., Kawagoe Y., Schreckengost W. E., Delmer D. P., Stalker D. M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12637–12642. doi: 10.1073/pnas.93.22.12637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Potter I., Fry S. C. Xyloglucan endotransglycosylase activity in pea internodes. Effects of applied gibberellic acid. Plant Physiol. 1993 Sep;103(1):235–241. doi: 10.1104/pp.103.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rose J. K., Lee H. H., Bennett A. B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5955–5960. doi: 10.1073/pnas.94.11.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shcherban T. Y., Shi J., Durachko D. M., Guiltinan M. J., McQueen-Mason S. J., Shieh M., Cosgrove D. J. Molecular cloning and sequence analysis of expansins--a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9245–9249. doi: 10.1073/pnas.92.20.9245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Silk W. K., Walker R. C., Labavitch J. Uronide Deposition Rates in the Primary Root of Zea mays. Plant Physiol. 1984 Mar;74(3):721–726. doi: 10.1104/pp.74.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith R. C., Fry S. C. Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J. 1991 Oct 15;279(Pt 2):529–535. doi: 10.1042/bj2790529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Talbott L. D., Ray P. M. Changes in molecular size of previously deposited and newly synthesized pea cell wall matrix polysaccharides : effects of auxin and turgor. Plant Physiol. 1992 Jan;98(1):369–379. doi: 10.1104/pp.98.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Talbott L. D., Ray P. M. Molecular size and separability features of pea cell wall polysaccharides : implications for models of primary wall structure. Plant Physiol. 1992 Jan;98(1):357–368. doi: 10.1104/pp.98.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tepfer M., Cleland R. E. A Comparison of Acid-induced Cell Wall Loosening in Valonia ventricosa and in Oat Coleoptiles. Plant Physiol. 1979 May;63(5):898–902. doi: 10.1104/pp.63.5.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wallace G., Fry S. C. Phenolic components of the plant cell wall. Int Rev Cytol. 1994;151:229–267. doi: 10.1016/s0074-7696(08)62634-0. [DOI] [PubMed] [Google Scholar]
  43. Wu Y., Spollen W. G., Sharp R. E., Hetherington P. R., Fry S. C. Root Growth Maintenance at Low Water Potentials (Increased Activity of Xyloglucan Endotransglycosylase and Its Possible Regulation by Abscisic Acid). Plant Physiol. 1994 Oct;106(2):607–615. doi: 10.1104/pp.106.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Xu W., Purugganan M. M., Polisensky D. H., Antosiewicz D. M., Fry S. C., Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell. 1995 Oct;7(10):1555–1567. doi: 10.1105/tpc.7.10.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES