Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Aug;9(8):1339–1356. doi: 10.1105/tpc.9.8.1339

Nitrogen assimilation in alfalfa: isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves.

L Shi 1, S N Twary 1, H Yoshioka 1, R G Gregerson 1, S S Miller 1, D A Samac 1, J S Gantt 1, P J Unkefer 1, C P Vance 1
PMCID: PMC157002  PMID: 9286111

Abstract

Asparagine, the primary assimilation product from N2 fixation in temperate legumes and the predominant nitrogen transport product in many plant species, is synthesized via asparagine synthetase (AS; EC 6.3.5.4). Here, we report the isolation and characterization of a cDNA and a gene encoding the nodule-enhanced form of AS from alfalfa. The AS gene is comprised of 13 exons separated by 12 introns. The 5' flanking region of the AS gene confers nodule-enhanced reporter gene activity in transformed alfalfa. This region also confers enhanced reporter gene activity in dark-treated leaves. These results indicate that the 5' upstream region of the AS gene contains elements that affect expression in root nodules and leaves. Both AS mRNA and enzyme activity increased approximately 10- to 20-fold during the development of effective nodules. Ineffective nodules have strikingly reduced amounts of AS transcript. Alfalfa leaves have quite low levels of AS mRNA and protein; however, exposure to darkness resulted in a considerable increase in both. In situ hybridization with effective nodules and beta-glucuronidase staining of nodules from transgenic plants showed that AS is expressed in both infected and uninfected cells of the nodule symbiotic zone and in the nodule parenchyma. RNA gel blot analysis and in situ hybridization results are consistent with the hypothesis that initial AS expression in nodules is independent of nitrogenase activity.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrulis I. L., Chen J., Ray P. N. Isolation of human cDNAs for asparagine synthetase and expression in Jensen rat sarcoma cells. Mol Cell Biol. 1987 Jul;7(7):2435–2443. doi: 10.1128/mcb.7.7.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brears T., Liu C., Knight T. J., Coruzzi G. M. Ectopic Overexpression of Asparagine Synthetase in Transgenic Tobacco. Plant Physiol. 1993 Dec;103(4):1285–1290. doi: 10.1104/pp.103.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brears T., Walker E. L., Coruzzi G. M. A promoter sequence involved in cell-specific expression of the pea glutamine synthetase GS3A gene in organs of transgenic tobacco and alfalfa. Plant J. 1991 Sep;1(2):235–244. doi: 10.1111/j.1365-313x.1991.00235.x. [DOI] [PubMed] [Google Scholar]
  4. Chevalier C., Bourgeois E., Just D., Raymond P. Metabolic regulation of asparagine synthetase gene expression in maize (Zea mays L.) root tips. Plant J. 1996 Jan;9(1):1–11. doi: 10.1046/j.1365-313x.1996.09010001.x. [DOI] [PubMed] [Google Scholar]
  5. Datta D. B., Cai X., Wong P. P., Triplett E. W. Immunocytochemical Localization of Glutamine Synthetase in Organs of Phaseolus vulgaris L. Plant Physiol. 1991 Jun;96(2):507–512. doi: 10.1104/pp.96.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies K. M., King G. A. Isolation and characterization of a cDNA clone for a harvest-induced asparagine synthetase from Asparagus officinalis L. Plant Physiol. 1993 Aug;102(4):1337–1340. doi: 10.1104/pp.102.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies K. M., Seelye J. F., Irving D. E., Borst W. M., Hurst P. L., King G. A. Sugar regulation of harvest-related genes in asparagus. Plant Physiol. 1996 Jul;111(3):877–883. doi: 10.1104/pp.111.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Driscoll B. T., Finan T. M. NAD(+)-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol. 1993 Mar;7(6):865–873. doi: 10.1111/j.1365-2958.1993.tb01177.x. [DOI] [PubMed] [Google Scholar]
  9. Fedoroff N., Wessler S., Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell. 1983 Nov;35(1):235–242. doi: 10.1016/0092-8674(83)90226-x. [DOI] [PubMed] [Google Scholar]
  10. Forde B. G., Day H. M., Turton J. F., Shen W. J., Cullimore J. V., Oliver J. E. Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell. 1989 Apr;1(4):391–401. doi: 10.1105/tpc.1.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Franssen H. J., Vijn I., Yang W. C., Bisseling T. Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol. 1992 May;19(1):89–107. doi: 10.1007/BF00015608. [DOI] [PubMed] [Google Scholar]
  12. Fujihara S., Yamaguchi M. Asparagine formation in soybean nodules. Plant Physiol. 1980 Jul;66(1):139–141. doi: 10.1104/pp.66.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gantt J. S., Larson R. J., Farnham M. W., Pathirana S. M., Miller S. S., Vance C. P. Aspartate aminotransferase in effective and ineffective alfalfa nodules : cloning of a cDNA and determination of enzyme activity, protein, and mRNA levels. Plant Physiol. 1992 Mar;98(3):868–878. doi: 10.1104/pp.98.3.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Genix P., Bligny R., Martin J. B., Douce R. Transient accumulation of asparagine in sycamore cells after a long period of sucrose starvation. Plant Physiol. 1990 Oct;94(2):717–722. doi: 10.1104/pp.94.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gregerson R. G., Miller S. S., Petrowski M., Gantt J. S., Vance C. P. Genomic structure, expression and evolution of the alfalfa aspartate aminotransferase genes. Plant Mol Biol. 1994 Jun;25(3):387–399. doi: 10.1007/BF00043868. [DOI] [PubMed] [Google Scholar]
  16. Gregerson R. G., Miller S. S., Twary S. N., Gantt J. S., Vance C. P. Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell. 1993 Feb;5(2):215–226. doi: 10.1105/tpc.5.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gregerson R. G., Miller S. S., Twary S. N., Gantt J. S., Vance C. P. Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell. 1993 Feb;5(2):215–226. doi: 10.1105/tpc.5.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  19. Hirsch A. M., Bang M., Ausubel F. M. Ultrastructural analysis of ineffective alfalfa nodules formed by nif::Tn5 mutants of Rhizobium meliloti. J Bacteriol. 1983 Jul;155(1):367–380. doi: 10.1128/jb.155.1.367-380.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huber T. A., Streeter J. G. Asparagine biosynthesis in soybean nodules. Plant Physiol. 1984 Mar;74(3):605–610. doi: 10.1104/pp.74.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Joy K. W., Ireland R. J., Lea P. J. Asparagine synthesis in pea leaves, and the occurrence of an asparagine synthetase inhibitor. Plant Physiol. 1983 Sep;73(1):165–168. doi: 10.1104/pp.73.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lam H. M., Coschigano K., Schultz C., Melo-Oliveira R., Tjaden G., Oliveira I., Ngai N., Hsieh M. H., Coruzzi G. Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell. 1995 Jul;7(7):887–898. doi: 10.1105/tpc.7.7.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lam H. M., Peng S. S., Coruzzi G. M. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1347–1357. doi: 10.1104/pp.106.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meeks J. C., Wolk C. P., Schilling N., Shaffer P. W. Initial Organic Products of Fixation of [N]Dinitrogen by Root Nodules of Soybean (Glycine max). Plant Physiol. 1978 Jun;61(6):980–983. doi: 10.1104/pp.61.6.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mei B., Zalkin H. A cysteine-histidine-aspartate catalytic triad is involved in glutamine amide transfer function in purF-type glutamine amidotransferases. J Biol Chem. 1989 Oct 5;264(28):16613–16619. [PubMed] [Google Scholar]
  26. Miao G. H., Hirel B., Marsolier M. C., Ridge R. W., Verma D. P. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell. 1991 Jan;3(1):11–22. doi: 10.1105/tpc.3.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miller S. S., Boylan K. L., Vance C. P. Alfalfa Root Nodule Carbon Dioxide Fixation : III. Immunological Studies of Nodule Phosphoenolpyruvate Carboxylase. Plant Physiol. 1987 Jun;84(2):501–508. doi: 10.1104/pp.84.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakamura M., Yamada M., Hirota Y., Sugimoto K., Oka A., Takanami M. Nucleotide sequence of the asnA gene coding for asparagine synthetase of E. coli K-12. Nucleic Acids Res. 1981 Sep 25;9(18):4669–4676. doi: 10.1093/nar/9.18.4669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pathirana S. M., Vance C. P., Miller S. S., Gantt J. S. Alfalfa root nodule phosphoenolpyruvate carboxylase: characterization of the cDNA and expression in effective and plant-controlled ineffective nodules. Plant Mol Biol. 1992 Nov;20(3):437–450. doi: 10.1007/BF00040603. [DOI] [PubMed] [Google Scholar]
  30. Rosendahl L., Vance C. P., Pedersen W. B. Products of Dark CO(2) Fixation in Pea Root Nodules Support Bacteroid Metabolism. Plant Physiol. 1990 May;93(1):12–19. doi: 10.1104/pp.93.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Snapp S. S., Vance C. P. Asparagine Biosynthesis in Alfalfa (Medicago sativa L.) Root Nodules. Plant Physiol. 1986 Oct;82(2):390–395. doi: 10.1104/pp.82.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stougaard J., Jørgensen J. E., Christensen T., Kühle A., Marcker K. A. Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc3 and N23 gene promoters. Mol Gen Genet. 1990 Feb;220(3):353–360. doi: 10.1007/BF00391738. [DOI] [PubMed] [Google Scholar]
  33. Streeter J. G. Asparaginase and asparagine transaminase in soybean leaves and root nodules. Plant Physiol. 1977 Aug;60(2):235–239. doi: 10.1104/pp.60.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Streeter J. G. Estimation of ammonium concentration in the cytosol of soybean nodules. Plant Physiol. 1989 Jul;90(3):779–782. doi: 10.1104/pp.90.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stulen I., Oaks A. Asparagine synthetase in corn roots. Plant Physiol. 1977 Nov;60(5):680–683. doi: 10.1104/pp.60.5.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tsai F. Y., Coruzzi G. M. Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum. EMBO J. 1990 Feb;9(2):323–332. doi: 10.1002/j.1460-2075.1990.tb08114.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsai F. Y., Coruzzi G. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants. Mol Cell Biol. 1991 Oct;11(10):4966–4972. doi: 10.1128/mcb.11.10.4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Van Heeke G., Schuster S. M. The N-terminal cysteine of human asparagine synthetase is essential for glutamine-dependent activity. J Biol Chem. 1989 Nov 25;264(33):19475–19477. [PubMed] [Google Scholar]
  39. Vasse J., de Billy F., Camut S., Truchet G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol. 1990 Aug;172(8):4295–4306. doi: 10.1128/jb.172.8.4295-4306.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Virts E. L., Stanfield S. W., Helinski D. R., Ditta G. S. Common regulatory elements control symbiotic and microaerobic induction of nifA in Rhizobium meliloti. Proc Natl Acad Sci U S A. 1988 May;85(9):3062–3065. doi: 10.1073/pnas.85.9.3062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Welters P., Metz B., Felix G., Palme K., Szczyglowski K., de Bruijn F. J. Interaction of a rhizobial DNA-binding protein with the promoter region of a plant leghemoglobin gene. Plant Physiol. 1993 Aug;102(4):1095–1107. doi: 10.1104/pp.102.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yarosh O. K., Charles T. C., Finan T. M. Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Mol Microbiol. 1989 Jun;3(6):813–823. doi: 10.1111/j.1365-2958.1989.tb00230.x. [DOI] [PubMed] [Google Scholar]
  43. Zhang Y. P., Lambert M. A., Cairney A. E., Wills D., Ray P. N., Andrulis I. L. Molecular structure of the human asparagine synthetase gene. Genomics. 1989 Apr;4(3):259–265. doi: 10.1016/0888-7543(89)90329-7. [DOI] [PubMed] [Google Scholar]
  44. van de Wiel C., Scheres B., Franssen H., van Lierop M. J., van Lammeren A., van Kammen A., Bisseling T. The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J. 1990 Jan;9(1):1–7. doi: 10.1002/j.1460-2075.1990.tb08073.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES