Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Aug;9(8):1397–1409. doi: 10.1105/tpc.9.8.1397

Interaction Analyses of Genes Required for Resistance Responses to Powdery Mildew in Barley Reveal Distinct Pathways Leading to Leaf Cell Death.

C Peterhansel 1, A Freialdenhoven 1, J Kurth 1, R Kolsch 1, P Schulze-Lefert 1
PMCID: PMC157006  PMID: 12237388

Abstract

Race-specific resistance in barley to the powdery mildew fungus (Erysiphe graminis f sp hordei) is associated with a cell death reaction (hypersensitive response [HR]). Genetically, it is dependent on dominant resistance genes (Mlx), and in most cases, it is also dependent on Rar1 and Rar2. Non-race-specific resistance to the fungus, which is due to the lack of the Mlo wild-type allele, is dependent on Ror1 and Ror2 and is not associated with an HR in the region of pathogen attack. However, the absence of the Mlo wild-type allele stimulates a spontaneous cell death response in foliar tissue. This response is also controlled by Ror1 and Ror2, as indicated by trypan blue staining patterns. Lack of Mlo enhances transcript accumulation of pathogenesis-related genes upon fungal challenge, and this response is diminished by mutations in Ror genes. Using DNA marker-assisted selection of genotypes, we provide evidence, via gene interaction studies, that Ror1 and Ror2 are not essential components of race-specific resistance and do not compromise hypersensitive cell death. Reciprocal experiments show that neither is Rar1 a component of mlo-controlled resistance nor does it affect spontaneous cell death. We show that mlo- and Ror-dependent resistance is active when challenged with E. g. f sp tritici, a nonhost pathogen of barley. Our observations suggest separate genetic pathways operating in race-specific and non-race-specific resistance; they indicate also a separate genetic control of hypersensitive and spontaneous cell death in foliar tissue.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  2. Bryngelsson T., Sommer-Knudsen J., Gregersen P. L., Collinge D. B., Ek B., Thordal-Christensen H. Purification, characterization, and molecular cloning of basic PR-1-type pathogenesis-related proteins from barley. Mol Plant Microbe Interact. 1994 Mar-Apr;7(2):267–275. doi: 10.1094/mpmi-7-0267. [DOI] [PubMed] [Google Scholar]
  3. Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van der Lee T., Diergaarde P., Groenendijk J. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997 Mar 7;88(5):695–705. doi: 10.1016/s0092-8674(00)81912-1. [DOI] [PubMed] [Google Scholar]
  4. Century K. S., Holub E. B., Staskawicz B. J. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6597–6601. doi: 10.1073/pnas.92.14.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dangl J. L. Pièce de Résistance: novel classes of plant disease resistance genes. Cell. 1995 Feb 10;80(3):363–366. doi: 10.1016/0092-8674(95)90485-9. [DOI] [PubMed] [Google Scholar]
  6. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  7. Freialdenhoven A., Peterhansel C., Kurth J., Kreuzaler F., Schulze-Lefert P. Identification of Genes Required for the Function of Non-Race-Specific mlo Resistance to Powdery Mildew in Barley. Plant Cell. 1996 Jan;8(1):5–14. doi: 10.1105/tpc.8.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freialdenhoven A., Scherag B., Hollricher K., Collinge D. B., Thordal-Christensen H., Schulze-Lefert P. Nar-1 and Nar-2, Two Loci Required for Mla12-Specified Race-Specific Resistance to Powdery Mildew in Barley. Plant Cell. 1994 Jul;6(7):983–994. doi: 10.1105/tpc.6.7.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenberg J. T., Ausubel F. M. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 1993 Aug;4(2):327–341. doi: 10.1046/j.1365-313x.1993.04020327.x. [DOI] [PubMed] [Google Scholar]
  10. Hammond-Kosack K. E., Jones D. A., Jones JDG. Identification of Two Genes Required in Tomato for Full Cf-9-Dependent Resistance to Cladosporium fulvum. Plant Cell. 1994 Mar;6(3):361–374. doi: 10.1105/tpc.6.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lamb C. J., Lawton M. A., Dron M., Dixon R. A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. doi: 10.1016/0092-8674(89)90894-5. [DOI] [PubMed] [Google Scholar]
  12. Parker J. E., Holub E. B., Frost L. N., Falk A., Gunn N. D., Daniels M. J. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell. 1996 Nov;8(11):2033–2046. doi: 10.1105/tpc.8.11.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Salmeron J. M., Barker S. J., Carland F. M., Mehta A. Y., Staskawicz B. J. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell. 1994 Apr;6(4):511–520. doi: 10.1105/tpc.6.4.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science. 1996 Dec 20;274(5295):2063–2065. doi: 10.1126/science.274.5295.2063. [DOI] [PubMed] [Google Scholar]
  15. Staskawicz B. J., Ausubel F. M., Baker B. J., Ellis J. G., Jones J. D. Molecular genetics of plant disease resistance. Science. 1995 May 5;268(5211):661–667. doi: 10.1126/science.7732374. [DOI] [PubMed] [Google Scholar]
  16. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science. 1996 Dec 20;274(5295):2060–2063. doi: 10.1126/science.274.5295.2060. [DOI] [PubMed] [Google Scholar]
  17. Weymann K., Hunt M., Uknes S., Neuenschwander U., Lawton K., Steiner H. Y., Ryals J. Suppression and Restoration of Lesion Formation in Arabidopsis lsd Mutants. Plant Cell. 1995 Dec;7(12):2013–2022. doi: 10.1105/tpc.7.12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wolter M., Hollricher K., Salamini F., Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet. 1993 May;239(1-2):122–128. doi: 10.1007/BF00281610. [DOI] [PubMed] [Google Scholar]
  19. Yost T. J., Froyd K. K., Jensen D. R., Eckel R. H. Change in skeletal muscle lipoprotein lipase activity in response to insulin/glucose in non-insulin-dependent diabetes mellitus. Metabolism. 1995 Jun;44(6):786–790. doi: 10.1016/0026-0495(95)90193-0. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES