Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Aug;9(8):1411–1423. doi: 10.1105/tpc.9.8.1411

Characterization of Post-Transcriptionally Suppressed Transgene Expression That Confers Resistance to Tobacco Etch Virus Infection in Tobacco.

M M Tanzer 1, W F Thompson 1, M D Law 1, E A Wernsman 1, S Uknes 1
PMCID: PMC157007  PMID: 12237389

Abstract

Tobacco lines expressing transgenes that encode tobacco etch virus (TEV) coat protein (CP) mRNA with or without nonsense codons give rise to TEV-resistant tissues that have reduced levels of TEV CP mRNA while maintaining high levels of transgene transcriptional activity. Two phenotypes for virus resistance in the lines containing the transgene have been described: immune (no virus infection) and recovery (initial systemic symptoms followed by gradual recovery over several weeks). Here, we show that at early times in development, immune lines are susceptible to TEV infection and accumulate full-length CP mRNA. Therefore, immune lines also exhibit meiotic resetting, as is seen in the recovery lines, providing molecular evidence for a common mechanism of gene silencing and virus resistance in both cases. We also investigated the characteristics of two sets of low molecular weight RNAs that appear only in silenced tissue. One set has nearly intact 5[prime] ends, lacks poly(A) tails, and is associated with polyribosomes; the second set contains the 3[prime] end of the mRNA. Treating silenced leaf tissue with cycloheximide resulted in decreased levels of full-length mRNA and an increase in the levels of the low molecular weight RNAs, supporting a cytoplasmic decay mechanism that does not require ongoing translation. Surprisingly, mRNA from the transgene containing nonsense codons was associated with more ribosomes than expected, possibly resulting from translation from a start codon downstream of the introduced translational stop codons. We present a hypothesis for transgene/viral RNA degradation in which RNA degradation occurs in the cytoplasm while in association with polyribosomes.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abler M. L., Green P. J. Control of mRNA stability in higher plants. Plant Mol Biol. 1996 Oct;32(1-2):63–78. doi: 10.1007/BF00039377. [DOI] [PubMed] [Google Scholar]
  2. Baulcombe D. C. Mechanisms of Pathogen-Derived Resistance to Viruses in Transgenic Plants. Plant Cell. 1996 Oct;8(10):1833–1844. doi: 10.1105/tpc.8.10.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carrazana E. J., Pasieka K. B., Majzoub J. A. The vasopressin mRNA poly(A) tract is unusually long and increases during stimulation of vasopressin gene expression in vivo. Mol Cell Biol. 1988 Jun;8(6):2267–2274. doi: 10.1128/mcb.8.6.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dougherty W. G., Lindbo J. A., Smith H. A., Parks T. D., Swaney S., Proebsting W. M. RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol Plant Microbe Interact. 1994 Sep-Oct;7(5):544–552. [PubMed] [Google Scholar]
  6. Dougherty W. G., Parks T. D. Transgenes and gene suppression: telling us something new? Curr Opin Cell Biol. 1995 Jun;7(3):399–405. doi: 10.1016/0955-0674(95)80096-4. [DOI] [PubMed] [Google Scholar]
  7. English J. J., Mueller E., Baulcombe D. C. Suppression of Virus Accumulation in Transgenic Plants Exhibiting Silencing of Nuclear Genes. Plant Cell. 1996 Feb;8(2):179–188. doi: 10.1105/tpc.8.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flavell R. B. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3490–3496. doi: 10.1073/pnas.91.9.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galbraith D. W., Harkins K. R., Knapp S. Systemic Endopolyploidy in Arabidopsis thaliana. Plant Physiol. 1991 Jul;96(3):985–989. doi: 10.1104/pp.96.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gallie D. R. Translational control of cellular and viral mRNAs. Plant Mol Biol. 1996 Oct;32(1-2):145–158. doi: 10.1007/BF00039381. [DOI] [PubMed] [Google Scholar]
  11. Gantt J. S., Key J. L. Molecular cloning of a pea H1 histone cDNA. Eur J Biochem. 1987 Jul 1;166(1):119–125. doi: 10.1111/j.1432-1033.1987.tb13490.x. [DOI] [PubMed] [Google Scholar]
  12. Gerez L., Arad G., Efrat S., Ketzinel M., Kaempfer R. Post-transcriptional regulation of human interleukin-2 gene expression at processing of precursor transcripts. J Biol Chem. 1995 Aug 18;270(33):19569–19575. doi: 10.1074/jbc.270.33.19569. [DOI] [PubMed] [Google Scholar]
  13. Hart C. M., Fischer B., Neuhaus J. M., Meins F., Jr Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet. 1992 Nov;235(2-3):179–188. doi: 10.1007/BF00279359. [DOI] [PubMed] [Google Scholar]
  14. Jorgensen R. A. Cosuppression, flower color patterns, and metastable gene expression States. Science. 1995 May 5;268(5211):686–691. doi: 10.1126/science.268.5211.686. [DOI] [PubMed] [Google Scholar]
  15. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lagrimini L. M., Burkhart W., Moyer M., Rothstein S. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7542–7546. doi: 10.1073/pnas.84.21.7542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Larkins B. A., Davies E. Polyribosomes from Peas: V. An Attempt to Characterize the Total Free and Membrane-bound Polysomal Population. Plant Physiol. 1975 Apr;55(4):749–756. doi: 10.1104/pp.55.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindbo J. A., Dougherty W. G. Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant Microbe Interact. 1992 Mar-Apr;5(2):144–153. doi: 10.1094/mpmi-5-144. [DOI] [PubMed] [Google Scholar]
  19. Lindbo J. A., Dougherty W. G. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology. 1992 Aug;189(2):725–733. doi: 10.1016/0042-6822(92)90595-g. [DOI] [PubMed] [Google Scholar]
  20. Lindbo J. A., Silva-Rosales L., Proebsting W. M., Dougherty W. G. Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regulation of Gene Expression and Virus Resistance. Plant Cell. 1993 Dec;5(12):1749–1759. doi: 10.1105/tpc.5.12.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Linder M. C., Nagel G. M., Roboz M., Hungerford D. M., Jr The size and shape of heart and muscle ferritins analyzed by sedimentation, gel filtration, and electrophoresis. J Biol Chem. 1981 Sep 10;256(17):9104–9110. [PubMed] [Google Scholar]
  22. Mahajan S., Dolja V. V., Carrington J. C. Roles of the sequence encoding tobacco etch virus capsid protein in genome amplification: requirements for the translation process and a cis-active element. J Virol. 1996 Jul;70(7):4370–4379. doi: 10.1128/jvi.70.7.4370-4379.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Martienssen R. Epigenetic phenomena: paramutation and gene silencing in plants. Curr Biol. 1996 Jul 1;6(7):810–813. doi: 10.1016/s0960-9822(02)00601-2. [DOI] [PubMed] [Google Scholar]
  24. Metzlaff M., O'Dell M., Cluster P. D., Flavell R. B. RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell. 1997 Mar 21;88(6):845–854. doi: 10.1016/s0092-8674(00)81930-3. [DOI] [PubMed] [Google Scholar]
  25. Mittelsten Scheid O., Jakovleva L., Afsar K., Maluszynska J., Paszkowski J. A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7114–7119. doi: 10.1073/pnas.93.14.7114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Papp I., Iglesias V. A., Moscone E. A., Michalowski S., Spiker S., Park Y. D., Matzke M. A., Matzke A. J. Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J. 1996 Sep;10(3):469–478. doi: 10.1046/j.1365-313x.1996.10030469.x. [DOI] [PubMed] [Google Scholar]
  27. Park Y. D., Papp I., Moscone E. A., Iglesias V. A., Vaucheret H., Matzke A. J., Matzke M. A. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 1996 Feb;9(2):183–194. doi: 10.1046/j.1365-313x.1996.09020183.x. [DOI] [PubMed] [Google Scholar]
  28. Pascal E., Goodlove P. E., Wu L. C., Lazarowitz S. G. Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell. 1993 Jul;5(7):795–807. doi: 10.1105/tpc.5.7.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Penman S., Vesco C., Penman M. Localization and kinetics of formation of nuclear heterodisperse RNA, cytoplasmic heterodisperse RNA and polyribosome-associated messenger RNA in HeLa cells. J Mol Biol. 1968 May 28;34(1):49–60. doi: 10.1016/0022-2836(68)90234-9. [DOI] [PubMed] [Google Scholar]
  30. Qian R. L., Chen Y. D., Song Q. B., Hu Y. L. Binding of HMG proteins to the 5'-flanking sequence of human beta-globin gene. Sci China B. 1993 Jan;36(1):81–88. [PubMed] [Google Scholar]
  31. Reddy R., Singh R., Shimba S. Methylated cap structures in eukaryotic RNAs: structure, synthesis and functions. Pharmacol Ther. 1992;54(3):249–267. doi: 10.1016/0163-7258(92)90002-h. [DOI] [PubMed] [Google Scholar]
  32. Ross J. Messenger RNA turnover in eukaryotic cells. Mol Biol Med. 1988 Feb;5(1):1–14. [PubMed] [Google Scholar]
  33. Sachs A. B. Messenger RNA degradation in eukaryotes. Cell. 1993 Aug 13;74(3):413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
  34. Shirley B. W., Ham D. P., Senecoff J. F., Berry-Lowe S. L., Zurfluh L. L., Shah D. M., Meagher R. B. Comparison of the expression of two highly homologous members of the soybean ribulose-1,5-bisphosphate carboxylase small subunit gene family. Plant Mol Biol. 1990 Jun;14(6):909–925. doi: 10.1007/BF00019389. [DOI] [PubMed] [Google Scholar]
  35. Smith H. A., Swaney S. L., Parks T. D., Wernsman E. A., Dougherty W. G. Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell. 1994 Oct;6(10):1441–1453. doi: 10.1105/tpc.6.10.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tanzer M. M., Meagher R. B. Faithful degradation of soybean rbcS mRNA in vitro. Mol Cell Biol. 1994 Apr;14(4):2640–2650. doi: 10.1128/mcb.14.4.2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thompson D. M., Tanzer M. M., Meagher R. B. Degradation products of the mRNA encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean and transgenic petunia. Plant Cell. 1992 Jan;4(1):47–58. doi: 10.1105/tpc.4.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Uknes S., Dincher S., Friedrich L., Negrotto D., Williams S., Thompson-Taylor H., Potter S., Ward E., Ryals J. Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell. 1993 Feb;5(2):159–169. doi: 10.1105/tpc.5.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES