Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Oct;9(10):1713–1725. doi: 10.1105/tpc.9.10.1713

Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis.

J F Topping 1, K Lindsey 1
PMCID: PMC157016  PMID: 9368412

Abstract

To investigate mechanisms involved in establishing polar organization in Arabidopsis embryos and seedlings, we used promoter trapping to identify molecular markers (beta-glucuronidase fusion genes) expressed in spatially restricted patterns along the apical-basal axis. Three markers were identified that are expressed, respectively, in the embryonic and seedling root tip (POLARIS), cotyledons and shoot and root apices (EXORDIUM), and root cap (COLUMELLA). Each marker was crossed into the mutants hydra and emb30, which are defective in embryonic and seedling morphogenesis. All three markers were expressed in hydra mutants in patterns similar to those observed in phenotypically wild-type embryos and seedlings. In emb30 mutants, the EXORDIUM marker was expressed in cotyledons but not in the expected position of shoot and root meristems, and the marker COLUMELLA was not expressed at all, which is consistent with the view that the emb30 mutant, but not hydra, lacks shoot and root meristems. However, POLARIS was expressed in the basal part of hydra embryos lacking an embryonic root and in the basal parts of both hydra and emb30 seedlings. Expression of POLARIS is inducible by exogenous auxin and suppressed by cytokinin but is unaffected by inhibitors of polar auxin transport or cell division. We conclude that POLARIS differentiates positional aspects of polar development from structural aspects.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boerjan W., Cervera M. T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M., Inzé D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell. 1995 Sep;7(9):1405–1419. doi: 10.1105/tpc.7.9.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coen E. S., Meyerowitz E. M. The war of the whorls: genetic interactions controlling flower development. Nature. 1991 Sep 5;353(6339):31–37. doi: 10.1038/353031a0. [DOI] [PubMed] [Google Scholar]
  3. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  4. Feldman L. J. Effect of auxin on acropetal auxin transport in roots of corn. Plant Physiol. 1981 Feb;67(2):278–281. doi: 10.1104/pp.67.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferreira P. C., Hemerly A. S., Engler J. D., van Montagu M., Engler G., Inzé D. Developmental expression of the arabidopsis cyclin gene cyc1At. Plant Cell. 1994 Dec;6(12):1763–1774. doi: 10.1105/tpc.6.12.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. González-Reyes A., Elliott H., St Johnston D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature. 1995 Jun 22;375(6533):654–658. doi: 10.1038/375654a0. [DOI] [PubMed] [Google Scholar]
  7. Hobbie L., Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995 Feb;7(2):211–220. doi: 10.1046/j.1365-313x.1995.7020211.x. [DOI] [PubMed] [Google Scholar]
  8. Kares C., Prinsen E., Van Onckelen H., Otten L. IAA synthesis and root induction with iaa genes under heat shock promoter control. Plant Mol Biol. 1990 Aug;15(2):225–236. doi: 10.1007/BF00036909. [DOI] [PubMed] [Google Scholar]
  9. King J. J., Stimart D. P., Fisher R. H., Bleecker A. B. A Mutation Altering Auxin Homeostasis and Plant Morphology in Arabidopsis. Plant Cell. 1995 Dec;7(12):2023–2037. doi: 10.1105/tpc.7.12.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kornberg T. B., Tabata T. Segmentation of the Drosophila embryo. Curr Opin Genet Dev. 1993 Aug;3(4):585–594. doi: 10.1016/0959-437x(93)90094-6. [DOI] [PubMed] [Google Scholar]
  11. Laskowski M. J., Williams M. E., Nusbaum H. C., Sussex I. M. Formation of lateral root meristems is a two-stage process. Development. 1995 Oct;121(10):3303–3310. doi: 10.1242/dev.121.10.3303. [DOI] [PubMed] [Google Scholar]
  12. Laux T., Mayer K. F., Berger J., Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996 Jan;122(1):87–96. doi: 10.1242/dev.122.1.87. [DOI] [PubMed] [Google Scholar]
  13. Lindsey K., Wei W., Clarke M. C., McArdle H. F., Rooke L. M., Topping J. F. Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res. 1993 Jan;2(1):33–47. doi: 10.1007/BF01977679. [DOI] [PubMed] [Google Scholar]
  14. Liu Cm., Xu Zh., Chua N. H. Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. Plant Cell. 1993 Jun;5(6):621–630. doi: 10.1105/tpc.5.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lu P., Porat R., Nadeau J. A., O'Neill S. D. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell. 1996 Dec;8(12):2155–2168. doi: 10.1105/tpc.8.12.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Malamy J. E., Benfey P. N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 1997 Jan;124(1):33–44. doi: 10.1242/dev.124.1.33. [DOI] [PubMed] [Google Scholar]
  17. Quatrano R. S., Brian L., Aldridge J., Schultz T. Polar axis fixation in Fucus zygotes: components of the cytoskeleton and extracellular matrix. Dev Suppl. 1991;1:11–16. [PubMed] [Google Scholar]
  18. Scheres B., McKhann H. I., Van Den Berg C. Roots Redefined: Anatomical and Genetic Analysis of Root Development. Plant Physiol. 1996 Aug;111(4):959–964. doi: 10.1104/pp.111.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schiavone F. M., Cooke T. J. Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differ. 1987 Jun;21(1):53–62. doi: 10.1016/0045-6039(87)90448-9. [DOI] [PubMed] [Google Scholar]
  20. Shevell D. E., Leu W. M., Gillmor C. S., Xia G., Feldmann K. A., Chua N. H. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell. 1994 Jul 1;77(7):1051–1062. doi: 10.1016/0092-8674(94)90444-8. [DOI] [PubMed] [Google Scholar]
  21. Smith L. G., Hake S., Sylvester A. W. The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development. 1996 Feb;122(2):481–489. doi: 10.1242/dev.122.2.481. [DOI] [PubMed] [Google Scholar]
  22. Topping J. F., Agyeman F., Henricot B., Lindsey K. Identification of molecular markers of embryogenesis in Arabidopsis thaliana by promoter trapping. Plant J. 1994 Jun;5(6):895–903. doi: 10.1046/j.1365-313x.1994.5060895.x. [DOI] [PubMed] [Google Scholar]
  23. Topping J. F., Wei W., Lindsey K. Functional tagging of regulatory elements in the plant genome. Development. 1991 Aug;112(4):1009–1019. doi: 10.1242/dev.112.4.1009. [DOI] [PubMed] [Google Scholar]
  24. Torres-Ruiz R. A., Jürgens G. Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development. 1994 Oct;120(10):2967–2978. doi: 10.1242/dev.120.10.2967. [DOI] [PubMed] [Google Scholar]
  25. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vroemen C. W., Langeveld S., Mayer U., Ripper G., Jurgens G., Van Kammen A., De Vries S. C. Pattern Formation in the Arabidopsis Embryo Revealed by Position-Specific Lipid Transfer Protein Gene Expression. Plant Cell. 1996 May;8(5):783–791. doi: 10.1105/tpc.8.5.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wei W., Twell D., Lindsey K. A novel nucleic acid helicase gene identified by promoter trapping in Arabidopsis. Plant J. 1997 Jun;11(6):1307–1314. doi: 10.1046/j.1365-313x.1997.11061307.x. [DOI] [PubMed] [Google Scholar]
  28. Williams M. E., Sussex I. M. Developmental regulation of ribosomal protein L16 genes in Arabidopsis thaliana. Plant J. 1995 Jul;8(1):65–76. doi: 10.1046/j.1365-313x.1995.08010065.x. [DOI] [PubMed] [Google Scholar]
  29. Yadegari R., Paiva GRd., Laux T., Koltunow A. M., Apuya N., Zimmerman J. L., Fischer R. L., Harada J. J., Goldberg R. B. Cell Differentiation and Morphogenesis Are Uncoupled in Arabidopsis raspberry Embryos. Plant Cell. 1994 Dec;6(12):1713–1729. doi: 10.1105/tpc.6.12.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES